# The differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$ is

A. 1

B. $ - {({\log _{10}}x)^2}$

C. ${({\log _x}10)^2}$

D. $\dfrac{{{x^2}}}{{100}}$

Answer

Verified

383.4k+ views

Hint: Differential coefficient is nothing but finding out the derivative of a function with respect to the function which is given.

Complete step-by-step answer:

We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$

Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$

So, as per the question ,we have to find out the derivative of y with respect to z

So, we have to find $\dfrac{{dy}}{{dz}}$

Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z

So, we get yz=(${\log _{10}}x$)(${\log _x}10$)

Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form

So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$

So, we have got yz=1

From this, we get $y = \dfrac{1}{z}$

Now, let us differentiate y with respect to z

So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$

The value of $\dfrac{1}{z} = y$

So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$

Since $\dfrac{1}{z} = y$

So, option B is the correct answer for this question

Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.

Complete step-by-step answer:

We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$

Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$

So, as per the question ,we have to find out the derivative of y with respect to z

So, we have to find $\dfrac{{dy}}{{dz}}$

Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z

So, we get yz=(${\log _{10}}x$)(${\log _x}10$)

Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form

So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$

So, we have got yz=1

From this, we get $y = \dfrac{1}{z}$

Now, let us differentiate y with respect to z

So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$

The value of $\dfrac{1}{z} = y$

So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$

Since $\dfrac{1}{z} = y$

So, option B is the correct answer for this question

Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.

Recently Updated Pages

Define absolute refractive index of a medium

Find out what do the algal bloom and redtides sign class 10 biology CBSE

Prove that the function fleft x right xn is continuous class 12 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Find the values of other five trigonometric ratios class 10 maths CBSE

Find the values of other five trigonometric functions class 10 maths CBSE

Trending doubts

The ray passing through the of the lens is not deviated class 10 physics CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE

Write an application to the principal requesting five class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Draw a neat diagram showing acid solution in water class 10 chemistry CBSE

What is 1 divided by 0 class 8 maths CBSE

What is the z value for a 90 95 and 99 percent confidence class 11 maths CBSE

Explain zero factorial class 11 maths CBSE