
The differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$ is
A. 1
B. $ - {({\log _{10}}x)^2}$
C. ${({\log _x}10)^2}$
D. $\dfrac{{{x^2}}}{{100}}$
Answer
595.2k+ views
Hint: Differential coefficient is nothing but finding out the derivative of a function with respect to the function which is given.
Complete step-by-step answer:
We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$
Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$
So, as per the question ,we have to find out the derivative of y with respect to z
So, we have to find $\dfrac{{dy}}{{dz}}$
Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z
So, we get yz=(${\log _{10}}x$)(${\log _x}10$)
Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form
So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$
So, we have got yz=1
From this, we get $y = \dfrac{1}{z}$
Now, let us differentiate y with respect to z
So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$
The value of $\dfrac{1}{z} = y$
So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$
Since $\dfrac{1}{z} = y$
So, option B is the correct answer for this question
Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.
Complete step-by-step answer:
We have to find out the differential coefficient of ${\log _{10}}x$ with respect to ${\log _x}10$
Let us consider y=${\log _{10}}x$ and z= ${\log _x}10$
So, as per the question ,we have to find out the derivative of y with respect to z
So, we have to find $\dfrac{{dy}}{{dz}}$
Since, we cannot find out the value of $\dfrac{{dy}}{{dz}}$directly let’s multiply y and z
So, we get yz=(${\log _{10}}x$)(${\log _x}10$)
Now, let’s make use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and express yz in this form
So, we get $yz = \dfrac{{\log x}}{{\log 10}} \times \dfrac{{\log 10}}{{\log x}} = 1$
So, we have got yz=1
From this, we get $y = \dfrac{1}{z}$
Now, let us differentiate y with respect to z
So, we get $\dfrac{{dy}}{{dz}} = - \dfrac{1}{{{z^2}}}\left( {\because \dfrac{d}{{dx}}\left( {\dfrac{1}{x}} \right) = - \dfrac{1}{{{x^2}}}} \right)$
The value of $\dfrac{1}{z} = y$
So, we get $\dfrac{{dy}}{{dz}}$=$ - {y^2} = - {({\log _{10}}x)^2}$
Since $\dfrac{1}{z} = y$
So, option B is the correct answer for this question
Note: Make use of the appropriate formula of logarithms wherever needed and solve the question and also give importance to the function with respect to which the given has to be differentiated.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

