
The diagonal of a rectangular field is 60 meters more than the shorter side. If the longer side is 30 meters more than the shorter side, find the sides of the field.
Answer
587.4k+ views
Hint:Let the shorter side be x m and the longer side be y m. Use the constraints given in questions along with the concept that the diagonal BD( see the figure) will divide the rectangle into two right angled triangles. Thus apply Pythagoras theorem to formulate relations between the two variables.
Complete step-by-step answer:
Let ABCD be a rectangular field.
Let the shorter side of the rectangle be x meters.
And the longer side be y meters.
Therefore,
BC = x meter and DC = y meter.
Now it is given that the diagonal of a rectangular field is 60 meters more than the shorter side.
$ \Rightarrow BD = 60 + BC$
$ \Rightarrow BD = 60 + x$ meters.
Now it is also given that the longer side of a rectangular field is 30 meters more than the shorter side.
$ \Rightarrow DC = 30 + BC$
$ \Rightarrow y = 30 + x$............................ (1)
Now as we know that in a rectangle adjacent sides are perpendicular to each other therefore apply Pythagoras theorem in triangle BDC we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {BD} \right)^2} = {\left( {BC} \right)^2} + {\left( {CD} \right)^2}$
Now substitute all the values in this equation we have,
$ \Rightarrow {\left( {60 + x} \right)^2} = {\left( x \right)^2} + {\left( y \right)^2}$
Now from equation (1) we have,
$ \Rightarrow {\left( {60 + x} \right)^2} = {\left( x \right)^2} + {\left( {30 + x} \right)^2}$
$ \Rightarrow {x^2} = {\left( {60 + x} \right)^2} - {\left( {30 + x} \right)^2}$
Now apply the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ we have,
$ \Rightarrow {x^2} = \left( {60 + x - 30 - x} \right)\left( {60 + x + 30 + x} \right)$
$ \Rightarrow {x^2} = \left( {30} \right)\left( {90 + 2x} \right)$
$ \Rightarrow {x^2} = 60x + 2700$
$ \Rightarrow {x^2} - 60x - 2700 = 0$
Now factorize this equation we have,
\[ \Rightarrow {x^2} - 90x + 30x - 2700 = 0\]
\[ \Rightarrow x\left( {x - 90} \right) + 30\left( {x - 90} \right) = 0\]
\[ \Rightarrow \left( {x - 90} \right)\left( {x + 30} \right) = 0\]
$ \Rightarrow x = 90, - 30$
As we know side cannot be in negative,
Therefore x = 90 meter is the valid case.
So the length of the shorter side = 90 meters.
And the length of the longer side = (30 + 90) = 120 meters.
So this is the required answer.
Note – A rectangle is a quadrilateral, such that the opposite sides are parallel and equal to each other. Each interior angle is equal to ${90^0}$, and the diagonals also bisect each other. In a rectangle the diagonals are congruent however diagonals are not perpendicular. The adjacent angles are supplementary too.
Complete step-by-step answer:
Let ABCD be a rectangular field.
Let the shorter side of the rectangle be x meters.
And the longer side be y meters.
Therefore,
BC = x meter and DC = y meter.
Now it is given that the diagonal of a rectangular field is 60 meters more than the shorter side.
$ \Rightarrow BD = 60 + BC$
$ \Rightarrow BD = 60 + x$ meters.
Now it is also given that the longer side of a rectangular field is 30 meters more than the shorter side.
$ \Rightarrow DC = 30 + BC$
$ \Rightarrow y = 30 + x$............................ (1)
Now as we know that in a rectangle adjacent sides are perpendicular to each other therefore apply Pythagoras theorem in triangle BDC we have,
$ \Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}$
$ \Rightarrow {\left( {BD} \right)^2} = {\left( {BC} \right)^2} + {\left( {CD} \right)^2}$
Now substitute all the values in this equation we have,
$ \Rightarrow {\left( {60 + x} \right)^2} = {\left( x \right)^2} + {\left( y \right)^2}$
Now from equation (1) we have,
$ \Rightarrow {\left( {60 + x} \right)^2} = {\left( x \right)^2} + {\left( {30 + x} \right)^2}$
$ \Rightarrow {x^2} = {\left( {60 + x} \right)^2} - {\left( {30 + x} \right)^2}$
Now apply the identity ${a^2} - {b^2} = \left( {a - b} \right)\left( {a + b} \right)$ we have,
$ \Rightarrow {x^2} = \left( {60 + x - 30 - x} \right)\left( {60 + x + 30 + x} \right)$
$ \Rightarrow {x^2} = \left( {30} \right)\left( {90 + 2x} \right)$
$ \Rightarrow {x^2} = 60x + 2700$
$ \Rightarrow {x^2} - 60x - 2700 = 0$
Now factorize this equation we have,
\[ \Rightarrow {x^2} - 90x + 30x - 2700 = 0\]
\[ \Rightarrow x\left( {x - 90} \right) + 30\left( {x - 90} \right) = 0\]
\[ \Rightarrow \left( {x - 90} \right)\left( {x + 30} \right) = 0\]
$ \Rightarrow x = 90, - 30$
As we know side cannot be in negative,
Therefore x = 90 meter is the valid case.
So the length of the shorter side = 90 meters.
And the length of the longer side = (30 + 90) = 120 meters.
So this is the required answer.
Note – A rectangle is a quadrilateral, such that the opposite sides are parallel and equal to each other. Each interior angle is equal to ${90^0}$, and the diagonals also bisect each other. In a rectangle the diagonals are congruent however diagonals are not perpendicular. The adjacent angles are supplementary too.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

