# The decimal expansion of rational numbers $\dfrac{{49}}{{40}}$ will terminate after how many places of decimal?

Answer

Verified

361.8k+ views

Hint: The decimal expansion of a number consists of a decimal point followed by several digits. Whenever we try to convert a fraction to numerical value, we get a decimal value.

Complete step-by-step answer:

The given rational number = $\dfrac{{49}}{{40}}$

Multiplying and dividing the above fraction with ‘25’.

$ \Rightarrow \dfrac{{49}}{{40}} \times \dfrac{{25}}{{25}}$

$ = \dfrac{{1225}}{{1000}}$

In the denominator we have 1000 (three zeros), so when dividing a number by thousand we get a decimal point followed by three digits.

$ = 1.225$

After the decimal point we got three digits.

$\therefore $ The given rational number $\dfrac{{49}}{{40}}$ terminates after 3 places of the decimal.

Note: Whenever we want to convert any rational number to a decimal value without using a calculator, we need to convert the denominator into a form of ${10^n}\left[ {n > 0} \right]$. If ‘k’ zeros are present in the denominator, then we will have ‘k’ digits after the decimal point in the numerator.

For example take $\dfrac{9}{{100}}$, this value equals 0.09, sometimes we may encounter non-terminating values after the decimal point, eg: $\dfrac{1}{3} = 0.33333333333.......$

Complete step-by-step answer:

The given rational number = $\dfrac{{49}}{{40}}$

Multiplying and dividing the above fraction with ‘25’.

$ \Rightarrow \dfrac{{49}}{{40}} \times \dfrac{{25}}{{25}}$

$ = \dfrac{{1225}}{{1000}}$

In the denominator we have 1000 (three zeros), so when dividing a number by thousand we get a decimal point followed by three digits.

$ = 1.225$

After the decimal point we got three digits.

$\therefore $ The given rational number $\dfrac{{49}}{{40}}$ terminates after 3 places of the decimal.

Note: Whenever we want to convert any rational number to a decimal value without using a calculator, we need to convert the denominator into a form of ${10^n}\left[ {n > 0} \right]$. If ‘k’ zeros are present in the denominator, then we will have ‘k’ digits after the decimal point in the numerator.

For example take $\dfrac{9}{{100}}$, this value equals 0.09, sometimes we may encounter non-terminating values after the decimal point, eg: $\dfrac{1}{3} = 0.33333333333.......$

Last updated date: 21st Sep 2023

•

Total views: 361.8k

•

Views today: 7.61k

Recently Updated Pages

What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Write an application to the principal requesting five class 10 english CBSE

What were the social economic and political conditions class 10 social science CBSE

What is the difference between anaerobic aerobic respiration class 10 biology CBSE