The cost of pure ghee is Rs x per kg. If the price of it is increased by 20 per kg, how many kilograms of pure ghee does one get in Rs 800 according to the new price?
(a) $\dfrac{800}{x+20}$
(b) $\dfrac{800}{x-20}$
(c) $\dfrac{x+20}{800}$
(d) $\dfrac{800}{x}$
Last updated date: 20th Mar 2023
•
Total views: 303.3k
•
Views today: 3.83k
Answer
303.3k+ views
Hint: To solve this problem, we should be aware about the basics of unitary method. We will try to find the amount of pure ghee we can get in Rs 1 and then multiply that by 800 to get the required amount of pure ghee.
Complete step by step answer:
Now, we can use the unitary method to solve the given problem in hand. Basically, the unitary method is a technique for solving a problem by first finding the value of a single unit, and then finding the necessary value by multiplying the single unit value. In essence, this method is used to find the value of a unit from the value of a multiple, and hence the value of a multiple. To explain this definition,
Let’s say, 2 bags cost 50 rupees and suppose we want to know how many bags we can buy from 75 rupees. What we do is, we see how many bags can be bought for 1 rupee. Then we multiply that by 75. Thus,
For 50 rupees, we have 2 bags
For 1 rupee, we have $\dfrac{1}{25}$bags
For 75 rupees, we have $\dfrac{75}{25}$=3 bags
We use a similar methodology to solve the given problem in hand. Thus, we have,
We are given that the price is increased by Rs 20 per kg. Thus, the new price is Rs (x+20) per kg. We have,
Cost of pure ghee is Rs x+20 per kg.
Thus, in Rs 1, we would have $\dfrac{1}{x+20}$kg of pure ghee.
Now, to find the amount of pure ghee for Rs 800, we have $\dfrac{800}{x+20}$kg of pure ghee.
Hence, the correct answer is (a) $\dfrac{800}{x+20}$.
Hint: The use of unitary method is only applicable when the quantities are directly related to each other. In case a quantity is directly related to square/cube/inverse or any other operations, the unitary method yields inaccurate results. For example, if x varies as a square of y, we cannot use a unitary method between x and y variables.
Complete step by step answer:
Now, we can use the unitary method to solve the given problem in hand. Basically, the unitary method is a technique for solving a problem by first finding the value of a single unit, and then finding the necessary value by multiplying the single unit value. In essence, this method is used to find the value of a unit from the value of a multiple, and hence the value of a multiple. To explain this definition,
Let’s say, 2 bags cost 50 rupees and suppose we want to know how many bags we can buy from 75 rupees. What we do is, we see how many bags can be bought for 1 rupee. Then we multiply that by 75. Thus,
For 50 rupees, we have 2 bags
For 1 rupee, we have $\dfrac{1}{25}$bags
For 75 rupees, we have $\dfrac{75}{25}$=3 bags
We use a similar methodology to solve the given problem in hand. Thus, we have,
We are given that the price is increased by Rs 20 per kg. Thus, the new price is Rs (x+20) per kg. We have,
Cost of pure ghee is Rs x+20 per kg.
Thus, in Rs 1, we would have $\dfrac{1}{x+20}$kg of pure ghee.
Now, to find the amount of pure ghee for Rs 800, we have $\dfrac{800}{x+20}$kg of pure ghee.
Hence, the correct answer is (a) $\dfrac{800}{x+20}$.
Hint: The use of unitary method is only applicable when the quantities are directly related to each other. In case a quantity is directly related to square/cube/inverse or any other operations, the unitary method yields inaccurate results. For example, if x varies as a square of y, we cannot use a unitary method between x and y variables.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

The coordinates of the points A and B are a0 and a0 class 11 maths JEE_Main

Trending doubts
Write an application to the principal requesting five class 10 english CBSE

Tropic of Cancer passes through how many states? Name them.

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Write a letter to the Principal of your school to plead class 10 english CBSE

What is per capita income

Change the following sentences into negative and interrogative class 10 english CBSE

A Short Paragraph on our Country India
