
The base of a prism is a regular hexagon. If every edge of the prism measures 1 meter, then the volume of the prism is:
A) $\dfrac{3 \sqrt{2}}{2}\;\text{m}^3$
B) $\dfrac{3 \sqrt{3}}{2}\;\text{m}^3$
C) $\dfrac{6 \sqrt{2}}{2}\;\text{m}^3$
D) $\dfrac{5 \sqrt{3}}{2}\;\text{m}^3$
Answer
577.2k+ views
Hint: We will first determine the values of the length of each edge of the regular hexagon and the height of the prism. We will then substitute the value of length of each edge of regular hexagon and the height of the prism in the formula, \[V = \dfrac{{3\sqrt 3 }}{2} \times {a^2} \times h\] to find the volume of the required figure.
Complete step by step solution:
Since, every edge of a prism is 1 meter, it means that the length of each side of the hexagon is 1 meter and the height of the prism is 1 meter.
A prism with base as a regular hexagon is a three-dimensional solid shape which has 8 faces, 18 edges, and 12 vertices.
Volume of any three- dimensional solid shape is the amount of space enclosed by that shape.
Volume of Hexagonal prism is \[V = \dfrac{{3\sqrt 3 }}{2} \times {a^2} \times h\] , where $a$ is the length of side of the regular hexagon and $h$ is the height of the prism.
In this question, the length of each side of the hexagon is 1 meter and the height of the prism is 1 meter.
On substituting the value of $a = 1$ and $h = 1$ in the formula $V = \dfrac{{3\sqrt 3 }}{2} \times {a^2} \times h$ , we get,
$V = \dfrac{{3\sqrt 3 }}{2} \times {\left( 1 \right)^2} \times 1$
On solving the equation we get,
$V = \dfrac{{3\sqrt 3 }}{2}$
Hence, the volume of the required prism is $\dfrac{{3\sqrt 3 }}{2}{m^3}$.
Hence, option B is the correct answer.
Note: It is important to remember the formula of a regular prism to solve these types of questions. Also, height is not directly written in the question. Since every edge is of the same length, the height of the prism will be equal to the length of the edges.
Complete step by step solution:
Since, every edge of a prism is 1 meter, it means that the length of each side of the hexagon is 1 meter and the height of the prism is 1 meter.
A prism with base as a regular hexagon is a three-dimensional solid shape which has 8 faces, 18 edges, and 12 vertices.
Volume of any three- dimensional solid shape is the amount of space enclosed by that shape.
Volume of Hexagonal prism is \[V = \dfrac{{3\sqrt 3 }}{2} \times {a^2} \times h\] , where $a$ is the length of side of the regular hexagon and $h$ is the height of the prism.
In this question, the length of each side of the hexagon is 1 meter and the height of the prism is 1 meter.
On substituting the value of $a = 1$ and $h = 1$ in the formula $V = \dfrac{{3\sqrt 3 }}{2} \times {a^2} \times h$ , we get,
$V = \dfrac{{3\sqrt 3 }}{2} \times {\left( 1 \right)^2} \times 1$
On solving the equation we get,
$V = \dfrac{{3\sqrt 3 }}{2}$
Hence, the volume of the required prism is $\dfrac{{3\sqrt 3 }}{2}{m^3}$.
Hence, option B is the correct answer.
Note: It is important to remember the formula of a regular prism to solve these types of questions. Also, height is not directly written in the question. Since every edge is of the same length, the height of the prism will be equal to the length of the edges.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

