
The average of 5 consecutive numbers is m. If the next three natural numbers are also included, how much more than m will the average of these 8 numbers be?
A. 2
B. 1
C. 1.4
D .1.5
Answer
620.4k+ views
Hint- In order to solve this problem, we must choose the formula of Average along with the proper understanding of how we assume consecutive natural numbers.
Complete step-by-step answer:
We know that
An average refers to the arithmetic mean, the sum of the numbers divided by how many numbers are being averaged which is a single number itself taken as representative of a list of numbers.
Average = $\dfrac{{{\text{sum of all terms}}}}{{{\text{total numbers of terms}}}}$
Let the five consecutive natural numbers be x, x + 1, x + 2, x + 3, x + 4
Here x is a general number from which we took consecutive 5 natural number
Average of these 5 consecutive natural number will be
\[\dfrac{{\left( {{\text{x + x + 1 + x + 2 + x + 3 + x + 4}}} \right)}}{5}{\text{ = }}\left( {\dfrac{{{\text{5x + 10}}}}{5}} \right){\text{ = x + 2}}\]
In the question, it is given that Average of these 5 consecutive natural number is m
Hence we can write
⇒ \[{\text{x + 2}}\] = m
⇒ x = m – 2 …………...(1)
If the next three natural numbers are also included,
∴ The 8 consecutive numbers are x, x + 1, x + 2, x + 3, x + 4, x + 5, x + 6, x + 7
Average of these 8 numbers is
\[\dfrac{{\left( {{\text{x + x + 1 + x + 2 + x + 3 + x + 4 + x + 5 + x + 6 + x + 7}}} \right)}}{8} = {\text{ }}\left( {\dfrac{{8{\text{x + 28}}}}{8}} \right)\] ⇒ ${\text{x + }}\dfrac{{28}}{8}{\text{ = x + 3}}{\text{.5}}$
Assume Average of these 8 consecutive natural number is n
Hence we can write
⇒ ${\text{x + 3}}{\text{.5}}$= n …………………... (2)
On putting the value of x from equation (1) in equation (2)
⇒ ${\text{m - 2 + 3}}{\text{.5}}$= n
⇒ ${\text{m + 1}}{\text{.5 = n}}$
⇒ ${\text{m - n = 1}}{\text{.5}}$
⇒ Average of earlier 5 consecutive natural number (m) - Average of 8 consecutive natural number (n) = 1.5
In other words, we can say that m is 1.5 more than the average of 8 numbers or the average of numbers increased by 1.5.
Hence option D is correct.
Note- Whenever we face such type of problems the key concept we have to remember is that always remember the formula of Average which is stated above, then using this formula calculate average. Sometimes in any question you might have used it twice just like in the above question, first for 5 natural numbers then again for 8 natural numbers.
Complete step-by-step answer:
We know that
An average refers to the arithmetic mean, the sum of the numbers divided by how many numbers are being averaged which is a single number itself taken as representative of a list of numbers.
Average = $\dfrac{{{\text{sum of all terms}}}}{{{\text{total numbers of terms}}}}$
Let the five consecutive natural numbers be x, x + 1, x + 2, x + 3, x + 4
Here x is a general number from which we took consecutive 5 natural number
Average of these 5 consecutive natural number will be
\[\dfrac{{\left( {{\text{x + x + 1 + x + 2 + x + 3 + x + 4}}} \right)}}{5}{\text{ = }}\left( {\dfrac{{{\text{5x + 10}}}}{5}} \right){\text{ = x + 2}}\]
In the question, it is given that Average of these 5 consecutive natural number is m
Hence we can write
⇒ \[{\text{x + 2}}\] = m
⇒ x = m – 2 …………...(1)
If the next three natural numbers are also included,
∴ The 8 consecutive numbers are x, x + 1, x + 2, x + 3, x + 4, x + 5, x + 6, x + 7
Average of these 8 numbers is
\[\dfrac{{\left( {{\text{x + x + 1 + x + 2 + x + 3 + x + 4 + x + 5 + x + 6 + x + 7}}} \right)}}{8} = {\text{ }}\left( {\dfrac{{8{\text{x + 28}}}}{8}} \right)\] ⇒ ${\text{x + }}\dfrac{{28}}{8}{\text{ = x + 3}}{\text{.5}}$
Assume Average of these 8 consecutive natural number is n
Hence we can write
⇒ ${\text{x + 3}}{\text{.5}}$= n …………………... (2)
On putting the value of x from equation (1) in equation (2)
⇒ ${\text{m - 2 + 3}}{\text{.5}}$= n
⇒ ${\text{m + 1}}{\text{.5 = n}}$
⇒ ${\text{m - n = 1}}{\text{.5}}$
⇒ Average of earlier 5 consecutive natural number (m) - Average of 8 consecutive natural number (n) = 1.5
In other words, we can say that m is 1.5 more than the average of 8 numbers or the average of numbers increased by 1.5.
Hence option D is correct.
Note- Whenever we face such type of problems the key concept we have to remember is that always remember the formula of Average which is stated above, then using this formula calculate average. Sometimes in any question you might have used it twice just like in the above question, first for 5 natural numbers then again for 8 natural numbers.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Who is eligible for RTE class 9 social science CBSE

Which places in India experience sunrise first and class 9 social science CBSE

What is pollution? How many types of pollution? Define it

Name 10 Living and Non living things class 9 biology CBSE

