
The angles of a quadrilateral are in the ratio 2 : 3 : 5 : 8. Find the smallest angle of the quadrilateral.
Answer
509.9k+ views
Hint: We will first discuss the fact that sum of angles of quadrilateral is ${360^ \circ }$. Then, we will just assume the angle and find all other angles using the ratio and sum them all up and equate to ${360^ \circ }$, we will have with us, the measures of the smallest angle.
Complete step-by-step answer:
We will use the fact that the sum of angles of a quadrilateral is ${360^ \circ }$.
Sum of angles of quadrilateral is ${360^ \circ }$ ………(1)
Now, we have the ratio of angles as 2 : 3 : 5 : 8.
Let the first angle be $2x$, so then according to the ratio, the angles will be $2x,3x,5x,8x$.
Now using (1), we will have:-
$2x + 3x + 5x + 8x = {360^ \circ }$
Simplifying the LHS, we will have:-
$18x = {360^ \circ }$
Taking the 15 from multiplication in LHS to division in RHS, we will have:-
\[x = \dfrac{{{{360}^ \circ }}}{{18}} = \dfrac{{{{40}^ \circ }}}{2} = {20^ \circ }\]
Hence, $x = {20^ \circ }$.
So, the angles will be ${40^ \circ },{60^ \circ },{100^ \circ },{160^ \circ }$.
$\therefore $ The smallest angle of the quadrilateral = ${40^\circ }$
Note: The students might leave the answer part after finding the value of x, but they must remember that they are asked about the measure of angles, not the value to solve them. So, we must complete our answer by substituting the value of x in the required angle.
Complete step-by-step answer:
We will use the fact that the sum of angles of a quadrilateral is ${360^ \circ }$.
Sum of angles of quadrilateral is ${360^ \circ }$ ………(1)
Now, we have the ratio of angles as 2 : 3 : 5 : 8.
Let the first angle be $2x$, so then according to the ratio, the angles will be $2x,3x,5x,8x$.
Now using (1), we will have:-
$2x + 3x + 5x + 8x = {360^ \circ }$
Simplifying the LHS, we will have:-
$18x = {360^ \circ }$
Taking the 15 from multiplication in LHS to division in RHS, we will have:-
\[x = \dfrac{{{{360}^ \circ }}}{{18}} = \dfrac{{{{40}^ \circ }}}{2} = {20^ \circ }\]
Hence, $x = {20^ \circ }$.
So, the angles will be ${40^ \circ },{60^ \circ },{100^ \circ },{160^ \circ }$.
$\therefore $ The smallest angle of the quadrilateral = ${40^\circ }$
Note: The students might leave the answer part after finding the value of x, but they must remember that they are asked about the measure of angles, not the value to solve them. So, we must complete our answer by substituting the value of x in the required angle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

