
The angles $\alpha ,\beta ,\lambda $ of a triangle satisfy the equations $2\sin \alpha + 3\cos \beta = 3\sqrt 2 $ and $3\sin \beta + 2\cos \alpha = 1$. Then angle $\lambda $ equals to?
Answer
597.9k+ views
Hint: Use the property $\left( {\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)} \right)$ and $\left( {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1} \right)$.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

