     Question Answers

# The angles $\alpha ,\beta ,\lambda$ of a triangle satisfy the equations $2\sin \alpha + 3\cos \beta = 3\sqrt 2$ and $3\sin \beta + 2\cos \alpha = 1$. Then angle $\lambda$ equals to?  Hint: Use the property $\left( {\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)} \right)$ and $\left( {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1} \right)$.

As you know in triangle, the sum of all the internal angles is equal to $180^\circ$.
$\Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\ 3\sin \beta + 2\cos \alpha = 1 \\$
Now squaring on both sides of the given equations
$\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\ \Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\ = 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\ \Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\ = 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\$
Now add equations 2 and 3
$\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\ \Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\ = 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\ = 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\ \Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\ = 2\sin \left( {\alpha + \beta } \right) = 1 \\ = \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\$
Now from equation 1
$\alpha + \beta = 180^\circ - \lambda \\ \Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\ \Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\$

Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta$
$\Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ$
$\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\ \Rightarrow \lambda = 30^\circ \\$
which is the required value of $\lambda$.

Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ$. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.

View Notes
Trigonometry Functions of Sum and Difference of Angles  Trigonometry Angles  Sum Difference Angles Trigonometry  Sum and Difference of Angles in Trigonometry  Interior Angles of a Polygon  Exterior Angles of a Polygon  Construction of Angles  Angles of Parallelogram  Types of Angles  Some Application of Trigonometry for Class 10  