
The angles $\alpha ,\beta ,\lambda $ of a triangle satisfy the equations $2\sin \alpha + 3\cos \beta = 3\sqrt 2 $ and $3\sin \beta + 2\cos \alpha = 1$. Then angle $\lambda $ equals to?
Answer
603.6k+ views
Hint: Use the property $\left( {\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)} \right)$ and $\left( {\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1} \right)$.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
As you know in triangle, the sum of all the internal angles is equal to $180^\circ $.
$ \Rightarrow \alpha + \beta + \lambda = 180^\circ ................\left( 1 \right)$
Given equations are
$
2\sin \alpha + 3\cos \beta = 3\sqrt 2 \\
3\sin \beta + 2\cos \alpha = 1 \\
$
Now squaring on both sides of the given equations
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
$
As you know ${\left( {a + b} \right)^2} = {a^2} + {b^2} + 2ab$,
$
\Rightarrow {\left( {2\sin \alpha + 3\cos \beta } \right)^2} = {\left( {3\sqrt 2 } \right)^2} \\
= 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta = 9 \times 2 = 18.............\left( 2 \right) \\
\Rightarrow {\left( {3\sin \beta + 2\cos \alpha } \right)^2} = {1^2} \\
= 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 1..................\left( 3 \right) \\
$
Now add equations 2 and 3
$
\Rightarrow 4{\sin ^2}\alpha + 9{\cos ^2}\beta + 12\sin \alpha \cos \beta + 9{\sin ^2}\beta + 4{\cos ^2}\alpha + 12\sin \beta \cos \alpha = 18 + 1 \\
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
$
Now as we know that, $\left( {{{\sin }^2}\theta + {{\cos }^2}\theta } \right) = 1$
$
\Rightarrow 9\left( {{{\sin }^2}\beta + {{\cos }^2}\beta } \right) + 4\left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right) + 12\sin \alpha \cos \beta + 12\sin \beta \cos \alpha = 19 \\
= 9 \times 1 + 4 \times 1 + 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 \\
= 12\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 19 - 9 - 4 = 6 \\
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
$
Now, as we know that $\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)$
$
\Rightarrow 2\left( {\sin \alpha \cos \beta + \sin \beta \cos \alpha } \right) = 1 \\
= 2\sin \left( {\alpha + \beta } \right) = 1 \\
= \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
$
Now from equation 1
$
\alpha + \beta = 180^\circ - \lambda \\
\Rightarrow \sin \left( {\alpha + \beta } \right) = \dfrac{1}{2} \\
\Rightarrow \sin \left( {180^\circ - \lambda } \right) = \dfrac{1}{2} \\
$
Now we know that $\sin \left( {180^\circ - \theta } \right) = \sin \theta $
$ \Rightarrow \sin \lambda = \dfrac{1}{2}$
Now we know that $\dfrac{1}{2}$ is the value of $\sin 30^\circ $
$
\Rightarrow \sin \lambda = \dfrac{1}{2} = \sin 30^\circ \\
\Rightarrow \lambda = 30^\circ \\
$
which is the required value of $\lambda $.
Note: In these types of problems, we should remember that the sum of all internal angles of any triangle is equal to $180^\circ $. We have to modify the equation to get a suitable form such that unnecessary terms can be eliminated when we carry out addition/subtraction. This is followed by the application of the basic trigonometry properties to get the required result.
Recently Updated Pages
In cricket, what is a "pink ball" primarily used for?

In cricket, what is the "new ball" phase?

In cricket, what is a "death over"?

What is the "Powerplay" in T20 cricket?

In cricket, what is a "super over"?

In cricket, what is a "tail-ender"?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Who Won 36 Oscar Awards? Record Holder Revealed

The time gap between two sessions of the Parliament class 10 social science CBSE

