
The angle of elevation of the top of a tower from a point A on the ground is ${30^ \circ }$. On moving a distance of $20$ metres towards the foot of the tower to a point B the angle of elevation increases to ${60^ \circ }$. Find the height of the tower and the distance of the tower from point A.
Answer
522.7k+ views
Hint : (Make figure , analyze from it , get the problem solved)
Complete step-by-step answer:
From the figure
AB$ = 20m$ (Given)
Given
$
\angle CAB = {30^ \circ } \\
\angle CBD = {60^ \circ } \\
$
To find CD, The height of the tower
First we will consider triangle ACD
We know ,
$
\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} = \dfrac{{CD}}{{AD}} \\
AD = \sqrt 3 \,CD\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......({\text{i}}) \\
$
In triangle CBD we have
$
\tan {60^ \circ } = \dfrac{{CD}}{{BD}} = \sqrt 3 \\
\dfrac{{CD}}{{\sqrt 3 }} = \,BD\, \\
\\
AB = AD - BD \\
20 = \sqrt 3 \,CD - \,\,\dfrac{{CD}}{{\sqrt 3 }} = CD\,\left( {\dfrac{2}{{\sqrt 3 }}} \right)\, \\
\therefore \,\,CD = 10\sqrt 3 \\
$
Hence the height of the tower is $10\sqrt 3 = 17.34\,\,m$
Now we have to find the Length AD
So, Again we can consider the triangle ADC
$
tan{30^ \circ } = \dfrac{1}{{\sqrt 3 }} = \dfrac{{10\sqrt 3 }}{{AD}} \\
AD = 10\sqrt 3 .\sqrt 3 = 30\,\,m \\
$
Hence the distance of the tower from point A is 30 m.
Note :- Whenever these types of questions arise you must have to use the trigonometric concepts for triangles . Using the values of respective angles you can simply find any length present in the figure using “tan” in most of the cases will make your problem solved easily .
Given
$
\angle CAB = {30^ \circ } \\
\angle CBD = {60^ \circ } \\
$
To find CD, The height of the tower
First we will consider triangle ACD
We know ,
$
\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }} = \dfrac{{CD}}{{AD}} \\
AD = \sqrt 3 \,CD\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,......({\text{i}}) \\
$
In triangle CBD we have
$
\tan {60^ \circ } = \dfrac{{CD}}{{BD}} = \sqrt 3 \\
\dfrac{{CD}}{{\sqrt 3 }} = \,BD\, \\
\\
AB = AD - BD \\
20 = \sqrt 3 \,CD - \,\,\dfrac{{CD}}{{\sqrt 3 }} = CD\,\left( {\dfrac{2}{{\sqrt 3 }}} \right)\, \\
\therefore \,\,CD = 10\sqrt 3 \\
$
Hence the height of the tower is $10\sqrt 3 = 17.34\,\,m$
Now we have to find the Length AD
So, Again we can consider the triangle ADC
$
tan{30^ \circ } = \dfrac{1}{{\sqrt 3 }} = \dfrac{{10\sqrt 3 }}{{AD}} \\
AD = 10\sqrt 3 .\sqrt 3 = 30\,\,m \\
$
Hence the distance of the tower from point A is 30 m.
Note :- Whenever these types of questions arise you must have to use the trigonometric concepts for triangles . Using the values of respective angles you can simply find any length present in the figure using “tan” in most of the cases will make your problem solved easily .
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

