
The angle of elevation of the top of a building from the foot of the tower is ${30^ \circ }$ and the angle of elevation of the top of the tower from the foot of the building is ${60^ \circ }$. If the tower is 50 m high, find the height of the building.
Answer
610.5k+ views
Hint- Here, the concept of right triangle is used along with the help of some trigonometric functions.
Complete step by step answer:
Complete step by step answer:
Let us suppose a building AB of height $h$ meters and a tower CD of height 50 meters.
Given, the angle of elevation of the top of a building from the foot of the tower is $\theta = {30^ \circ }$
Also, given that the angle of elevation of the top of the tower from the foot of the building is $\alpha = {60^ \circ }$
From the figure, we can say that there are two right-angled triangles i.e., $\Delta {\text{ABC}}$ and $\Delta {\text{BCD}}$.
In right-angled $\Delta {\text{ABC}}$, we have
$\tan \theta = \dfrac{h}{{{\text{BC}}}} \Rightarrow \tan {30^ \circ } = \dfrac{h}{{{\text{BC}}}} \Rightarrow {\text{BC}} = \dfrac{h}{{\tan {{30}^ \circ }}}$
As, $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $
$\therefore {\text{BC}} = \dfrac{h}{{\dfrac{1}{{\sqrt 3 }}}} = h\sqrt 3 $
Also, In right-angled $\Delta {\text{BCD}}$, we have
$\tan \alpha = \dfrac{{50}}{{{\text{BC}}}} \Rightarrow \tan {60^ \circ } = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow \sqrt 3 = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow h = \dfrac{{50}}{{{{\left( {\sqrt 3 } \right)}^2}}} = \dfrac{{50}}{3}$
Therefore, the height of the building is $\dfrac{{50}}{3}$ meters.
Note- In any right angle triangle, the hypotenuse is the side opposite to right angle, the perpendicular is the side opposite to the considered acute angle and base is the left side. Also, trigonometric function $\tan \theta $ is the ratio of the perpendicular to the hypotenuse in the right triangle.
Given, the angle of elevation of the top of a building from the foot of the tower is $\theta = {30^ \circ }$
Also, given that the angle of elevation of the top of the tower from the foot of the building is $\alpha = {60^ \circ }$
From the figure, we can say that there are two right-angled triangles i.e., $\Delta {\text{ABC}}$ and $\Delta {\text{BCD}}$.
In right-angled $\Delta {\text{ABC}}$, we have
$\tan \theta = \dfrac{h}{{{\text{BC}}}} \Rightarrow \tan {30^ \circ } = \dfrac{h}{{{\text{BC}}}} \Rightarrow {\text{BC}} = \dfrac{h}{{\tan {{30}^ \circ }}}$
As, $\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}$ and $\tan {60^ \circ } = \sqrt 3 $
$\therefore {\text{BC}} = \dfrac{h}{{\dfrac{1}{{\sqrt 3 }}}} = h\sqrt 3 $
Also, In right-angled $\Delta {\text{BCD}}$, we have
$\tan \alpha = \dfrac{{50}}{{{\text{BC}}}} \Rightarrow \tan {60^ \circ } = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow \sqrt 3 = \dfrac{{50}}{{h\sqrt 3 }} \Rightarrow h = \dfrac{{50}}{{{{\left( {\sqrt 3 } \right)}^2}}} = \dfrac{{50}}{3}$
Therefore, the height of the building is $\dfrac{{50}}{3}$ meters.
Note- In any right angle triangle, the hypotenuse is the side opposite to right angle, the perpendicular is the side opposite to the considered acute angle and base is the left side. Also, trigonometric function $\tan \theta $ is the ratio of the perpendicular to the hypotenuse in the right triangle.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

