Answer
Verified
464.1k+ views
Hint:
Read the question and visualise what is given in the question, you will be able to draw a diagram then once you have drawn the figure, try to equate the value of distance of the helicopter from the surface of the lake from trigonometric knowledge that you have. Remember that the reflection of the helicopter will be in a straight line from the helicopter itself.
Complete step by step solution:
Step 1:
We begin the question by drawing the diagram as described in the question.
Step 2:
We know, \[\tan {{30}^{\circ }}\] $=$ \[\dfrac{1}{\sqrt{3}}\].
In $\Delta ABC$,\[\tan {{30}^{\circ }}\]$=$ \[\dfrac{AC}{BC}\]$=$ \[\dfrac{H-45}{x}\]$=$\[\dfrac{1}{\sqrt{3}}\] $......(i)$
Again, \[\tan {{60}^{\circ }}\] $=$ \[\sqrt{3}\]
In $\Delta BCD$, $\tan {{60}^{0}}=\dfrac{CD}{BC}$$=$ \[\dfrac{H+45}{x}\]$=$\[\sqrt{3}\]$.....(ii)$
Step 3:
Dividing equation (i) and equation (ii),
\[\dfrac{H-45}{H+45}\]$=$ \[\dfrac{1}{3}\]
$\Rightarrow H=90 m$
Hence, the height h = distance of helicopter from the surface of the lake is\[90m\].
Note:
Do not be confused as to why we have taken both the H as the same. We know that the reflection of an object in a plane/lake/river is formed at the same distance as the distance of the object from the mirror or lake. That is why H is the same. To solve such similar questions, remember the values of the trigonometric functions and that is how it becomes easier for you.
Read the question and visualise what is given in the question, you will be able to draw a diagram then once you have drawn the figure, try to equate the value of distance of the helicopter from the surface of the lake from trigonometric knowledge that you have. Remember that the reflection of the helicopter will be in a straight line from the helicopter itself.
Complete step by step solution:
Step 1:
We begin the question by drawing the diagram as described in the question.
Step 2:
We know, \[\tan {{30}^{\circ }}\] $=$ \[\dfrac{1}{\sqrt{3}}\].
In $\Delta ABC$,\[\tan {{30}^{\circ }}\]$=$ \[\dfrac{AC}{BC}\]$=$ \[\dfrac{H-45}{x}\]$=$\[\dfrac{1}{\sqrt{3}}\] $......(i)$
Again, \[\tan {{60}^{\circ }}\] $=$ \[\sqrt{3}\]
In $\Delta BCD$, $\tan {{60}^{0}}=\dfrac{CD}{BC}$$=$ \[\dfrac{H+45}{x}\]$=$\[\sqrt{3}\]$.....(ii)$
Step 3:
Dividing equation (i) and equation (ii),
\[\dfrac{H-45}{H+45}\]$=$ \[\dfrac{1}{3}\]
$\Rightarrow H=90 m$
Hence, the height h = distance of helicopter from the surface of the lake is\[90m\].
Note:
Do not be confused as to why we have taken both the H as the same. We know that the reflection of an object in a plane/lake/river is formed at the same distance as the distance of the object from the mirror or lake. That is why H is the same. To solve such similar questions, remember the values of the trigonometric functions and that is how it becomes easier for you.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life