Answer
Verified
445.2k+ views
Hint: We know that \[y = \sin x = \cos x\] when \[x = \dfrac{\pi }{4}\] use this to find the slopes of both the curves then usen the formula \[\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\] where $m_1$ and $m_2$ are slopes of given curves.
Complete step-by-step answer:
Let the two curves be \[{C_1}\] and \[{C_2}\] respectively
\[{C_1}:y = \sin x,{C _ 2}:y = \cos x\]
Equation both the curves we are getting
\[\begin{array}{l}
\sin x = \cos x\\
\therefore x = \dfrac{\pi }{4}
\end{array}\]
Therefore curves intersect each other at the point P : \[x = \dfrac{\pi }{4}\]
Now, differentiating with respect to. x,
\[{C_1}\] gives : \[\dfrac{{dy}}{{dx}} = \cos x\]
\[{C_2}\] gives : \[\dfrac{{dy}}{{dx}} = - \sin x\]
Hence the slopes \[{{m_1}\& {m_2}}\] of \[{C_1}\& {C_2}\] at P: \[x = \dfrac{\pi }{4}\] are
\[\begin{array}{l}
{m_1} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\\
{m_2} = - \sin \dfrac{\pi }{4} = - \dfrac{1}{{\sqrt 2 }}
\end{array}\]
If \[\theta \] is the acute angle between them at P, then
\[\begin{array}{l}
\therefore \tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\\
\Rightarrow \tan \theta = \left| {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{1 + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}} \right|\\
\Rightarrow \tan \theta = \dfrac{{\left| {2\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right|}}{{\left| {\dfrac{{\left( {2 - 1} \right)}}{2}} \right|}}\\
\Rightarrow \tan \theta = 2\sqrt 2 \\
\therefore \theta = {\tan ^{ - 1}}\left( {2\sqrt 2 } \right)
\end{array}\]
So it can be clearly seen that option a is the correct option here.
Note: One must know the formula \[\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\] in order to solve these types of questions also remember that if we differentiate any function we get the slope of the curve formed by that function.
Complete step-by-step answer:
Let the two curves be \[{C_1}\] and \[{C_2}\] respectively
\[{C_1}:y = \sin x,{C _ 2}:y = \cos x\]
Equation both the curves we are getting
\[\begin{array}{l}
\sin x = \cos x\\
\therefore x = \dfrac{\pi }{4}
\end{array}\]
Therefore curves intersect each other at the point P : \[x = \dfrac{\pi }{4}\]
Now, differentiating with respect to. x,
\[{C_1}\] gives : \[\dfrac{{dy}}{{dx}} = \cos x\]
\[{C_2}\] gives : \[\dfrac{{dy}}{{dx}} = - \sin x\]
Hence the slopes \[{{m_1}\& {m_2}}\] of \[{C_1}\& {C_2}\] at P: \[x = \dfrac{\pi }{4}\] are
\[\begin{array}{l}
{m_1} = \cos \dfrac{\pi }{4} = \dfrac{1}{{\sqrt 2 }}\\
{m_2} = - \sin \dfrac{\pi }{4} = - \dfrac{1}{{\sqrt 2 }}
\end{array}\]
If \[\theta \] is the acute angle between them at P, then
\[\begin{array}{l}
\therefore \tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\\
\Rightarrow \tan \theta = \left| {\dfrac{{\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}{{1 + \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( { - \dfrac{1}{{\sqrt 2 }}} \right)}}} \right|\\
\Rightarrow \tan \theta = \dfrac{{\left| {2\left( {\dfrac{1}{{\sqrt 2 }}} \right)} \right|}}{{\left| {\dfrac{{\left( {2 - 1} \right)}}{2}} \right|}}\\
\Rightarrow \tan \theta = 2\sqrt 2 \\
\therefore \theta = {\tan ^{ - 1}}\left( {2\sqrt 2 } \right)
\end{array}\]
So it can be clearly seen that option a is the correct option here.
Note: One must know the formula \[\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|\] in order to solve these types of questions also remember that if we differentiate any function we get the slope of the curve formed by that function.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths