Answer
Verified
494.1k+ views
Hint: Angle between the curves can be calculated by the formula $\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|$ . Where, ${m_1}$ and ${m_2}$ are the slopes of the first and second curve respectively.
We know that, angle between the curves can be calculated by the formula $\operatorname{Tan} \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|$ . Where, ${m_1}$ and ${m_2}$ are the slopes of the first and second curve respectively. Now, to calculate the slope at the point of intersection, we need to find $\dfrac{{dy}}{{dx}}$ for each point.
Let’s calculate the intersection point first. $xy = 8 \Rightarrow x = \dfrac{8}{y},{x^2} = 8y \Rightarrow {(\dfrac{8}{y})^2} = 8y \Rightarrow \dfrac{{64}}{{{y^2}}} = 8y \Rightarrow 8 = {y^3} \Rightarrow y = 2$ .
Using this value of y in $xy = 8$ : $2x = 8 \Rightarrow x = 4$. Hence, the point of intersection will be (4,2). Now, we need to find the derivatives at this point. On differentiating ${x^2} = 8y$ we get, $\dfrac{{d{x^2}}}{{dx}} = 8\dfrac{{dy}}{{dx}} \Rightarrow 2x = 8\dfrac{{dy}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{4}$ and on substituting the point ${\dfrac{{dy}}{{dx}}_{(4,2)}} = \dfrac{4}{4} = 1$ .
Again, on differentiation the curve $xy = 8$ we get, $\dfrac{{d(xy)}}{{dx}} = \dfrac{{d8}}{{dx}} \Rightarrow x\dfrac{{dy}}{{dx}} + y\dfrac{{dx}}{{dx}} = 0 \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{y}{x}$ and on substituting the intersection point
${\dfrac{{dy}}{{dx}}_{(4,2)}} = - \dfrac{2}{4} = - \dfrac{1}{2}$ . Now, putting these values to the formula $\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|$ we get, $\tan \theta = \dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}} \Rightarrow \tan \theta = \dfrac{{ - \dfrac{1}{2} - 1}}{{1 - \dfrac{1}{2}}} \Rightarrow \tan \theta = \dfrac{{ - \dfrac{3}{2}}}{{\dfrac{1}{2}}} \Rightarrow \tan \theta = - \dfrac{3}{{{2}}} \times \dfrac{{{2}}}{1} = - 3 \Rightarrow \theta = {\tan ^{ - 1}}( - 3)$
Note: Here for the differentiation of $xy = 8$ , we have used the formula $\dfrac{{d({y_1}{y_2})}}{{dx}} = {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$ and for the curve ${x^2} = 8y$ , we have used $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$.
We know that, angle between the curves can be calculated by the formula $\operatorname{Tan} \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|$ . Where, ${m_1}$ and ${m_2}$ are the slopes of the first and second curve respectively. Now, to calculate the slope at the point of intersection, we need to find $\dfrac{{dy}}{{dx}}$ for each point.
Let’s calculate the intersection point first. $xy = 8 \Rightarrow x = \dfrac{8}{y},{x^2} = 8y \Rightarrow {(\dfrac{8}{y})^2} = 8y \Rightarrow \dfrac{{64}}{{{y^2}}} = 8y \Rightarrow 8 = {y^3} \Rightarrow y = 2$ .
Using this value of y in $xy = 8$ : $2x = 8 \Rightarrow x = 4$. Hence, the point of intersection will be (4,2). Now, we need to find the derivatives at this point. On differentiating ${x^2} = 8y$ we get, $\dfrac{{d{x^2}}}{{dx}} = 8\dfrac{{dy}}{{dx}} \Rightarrow 2x = 8\dfrac{{dy}}{{dx}} \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{x}{4}$ and on substituting the point ${\dfrac{{dy}}{{dx}}_{(4,2)}} = \dfrac{4}{4} = 1$ .
Again, on differentiation the curve $xy = 8$ we get, $\dfrac{{d(xy)}}{{dx}} = \dfrac{{d8}}{{dx}} \Rightarrow x\dfrac{{dy}}{{dx}} + y\dfrac{{dx}}{{dx}} = 0 \Rightarrow \dfrac{{dy}}{{dx}} = - \dfrac{y}{x}$ and on substituting the intersection point
${\dfrac{{dy}}{{dx}}_{(4,2)}} = - \dfrac{2}{4} = - \dfrac{1}{2}$ . Now, putting these values to the formula $\tan \theta = \left| {\dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}}} \right|$ we get, $\tan \theta = \dfrac{{{m_1} - {m_2}}}{{1 + {m_1}{m_2}}} \Rightarrow \tan \theta = \dfrac{{ - \dfrac{1}{2} - 1}}{{1 - \dfrac{1}{2}}} \Rightarrow \tan \theta = \dfrac{{ - \dfrac{3}{2}}}{{\dfrac{1}{2}}} \Rightarrow \tan \theta = - \dfrac{3}{{{2}}} \times \dfrac{{{2}}}{1} = - 3 \Rightarrow \theta = {\tan ^{ - 1}}( - 3)$
Note: Here for the differentiation of $xy = 8$ , we have used the formula $\dfrac{{d({y_1}{y_2})}}{{dx}} = {y_1}\dfrac{{d({y_2})}}{{dx}} + {y_2}\dfrac{{d({y_1})}}{{dx}}$ and for the curve ${x^2} = 8y$ , we have used $\dfrac{{d{x^n}}}{{dx}} = n{x^{n - 1}}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE