The altitude of the right-angled triangle is 7cm less than its base. If the hypotenuse is 13cm. find the other two sides
Last updated date: 31st Mar 2023
•
Total views: 306.3k
•
Views today: 3.82k
Answer
306.3k+ views
Hint: Here we have to use Pythagoras theorem to solve this question as it is mentioned that the triangle is a right-angled triangle.
“Complete step-by-step answer:”
Let altitude of right-angle triangle is $hcm$
Let base = $bcm$
Now according to question,
$h = b – 7$
Given, hypotenuse is $l$ = $13cm$
Now apply Pythagoras theorem
${l^2} = {h^2} + {b^2}$
$ \Rightarrow 13^2 = {\left( {b - 7} \right)^2} + {b^2}$
$ \Rightarrow {b^2} + {b^2} + 49 - 14b = 169$
$ \Rightarrow 2{b^2} - 14b - 120 = 0$
$ \Rightarrow {b^2} - 7b - 60 = 0$
Now factorize this equation
$ \Rightarrow \left( {b - 5} \right)\left( {b - 12} \right) = 0$
Therefore, base of right-angle triangle is 5 or 12cm
Altitude of triangle, $h = b - 7$
$ \Rightarrow h = 5 - 7 = - 2$
$ \Rightarrow h = 12 - 7 = 5cm$
$h$ cannot be negative So,
Base = 12cm and altitude =5cm
NOTE: Whenever we face such a problem the key concept is that we have to remember the Pythagoras theorem and based on the given condition we have to form an equation to get the desired value.
“Complete step-by-step answer:”
Let altitude of right-angle triangle is $hcm$
Let base = $bcm$
Now according to question,
$h = b – 7$
Given, hypotenuse is $l$ = $13cm$
Now apply Pythagoras theorem
${l^2} = {h^2} + {b^2}$
$ \Rightarrow 13^2 = {\left( {b - 7} \right)^2} + {b^2}$
$ \Rightarrow {b^2} + {b^2} + 49 - 14b = 169$
$ \Rightarrow 2{b^2} - 14b - 120 = 0$
$ \Rightarrow {b^2} - 7b - 60 = 0$
Now factorize this equation
$ \Rightarrow \left( {b - 5} \right)\left( {b - 12} \right) = 0$
Therefore, base of right-angle triangle is 5 or 12cm
Altitude of triangle, $h = b - 7$
$ \Rightarrow h = 5 - 7 = - 2$
$ \Rightarrow h = 12 - 7 = 5cm$
$h$ cannot be negative So,
Base = 12cm and altitude =5cm
NOTE: Whenever we face such a problem the key concept is that we have to remember the Pythagoras theorem and based on the given condition we have to form an equation to get the desired value.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
