The ages of A and B are in the ratio 3 : 5; eight years later their ages will be in the ratio 5 : 7. Find their current ages.
Answer
360.9k+ views
Hint: Assume the ages of A and B as variables and apply the two conditions to get the system equations with two variables. Solve these equations and you will get the current ages of A and B.
Complete step-by-step answer:
To solve the given problem we will assume the current age of A as ‘x’ and the current age of B as ‘y’. By using the notations we will write the given data as follows,
The current ages of A and B are in the ratio 3 : 5
Therefore, x : y = 3 : 5
The above equation can also be written as,
$\dfrac{x}{y}=\dfrac{3}{5}$ …………………………………………………………….. (1)
Also, After eight years the ratio of ages of A and B will become 5 : 7
Therefore, x + 8 : y + 8 = 5 : 7
The above equation can also be written as,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$ ………………………………………………………… (2)
As we have written the given data therefore we will write the equation (1) and equation (2) one by one,
Therefore equation (1) will become,
$\dfrac{x}{y}=\dfrac{3}{5}$
By cross multiplication in the above equation we will get,
$\Rightarrow 5\times x=3\times y$
If we shift 5 on the right hand side of the equation we will get,
$\Rightarrow x=\dfrac{3\times y}{5}$
$\Rightarrow x=\dfrac{3}{5}y$ ………………………………………………………. (3)
Also equation (2) will become,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$
By cross multiplication in the above equation we will get,
$\Rightarrow 7\times \left( x+8 \right)=5\times \left( y+8 \right)$
If we multiply the constants inside the bracket we will get,
$\Rightarrow 7\times x+7\times 8=5\times y+5\times 8$
$\Rightarrow 7x+56=5y+40$
$\Rightarrow 56-40=5y-7x$
$\Rightarrow 16=5y-7x$
By rearranging the above equation we will get,
$\Rightarrow 5y-7x=16$
Now we will put the value of equation (3) in the above equation therefore we will get,
$\Rightarrow 5y-7\times \left( \dfrac{3}{5}y \right)=16$
$\Rightarrow 5y-\dfrac{21}{5}y=16$
If we multiply by 5 on both sides of the equation we will get,
$\Rightarrow 5\times 5y-5\times \dfrac{21}{5}y=5\times 16$
$\Rightarrow 25y-21y=80$
$\Rightarrow 4y=80$
$\Rightarrow y=\dfrac{80}{4}$
Therefore, y = 20 …………………………………………………. (4)
Therefore the current age of B is 20 years.
Now we will put the value of equation (4) in equation (3), therefore we will get,
\[\Rightarrow x=\dfrac{3}{5}\times 20\]
\[\Rightarrow x=3\times 4\]
Therefore, x = 12
Therefore the current age of A is 12 years.
Therefore the ages of A and B are 12 years and 20 years respectively.
Note: You can use A and B as the ages directly in place of using the variables so that you can get the direct answers in terms of A and B.
Complete step-by-step answer:
To solve the given problem we will assume the current age of A as ‘x’ and the current age of B as ‘y’. By using the notations we will write the given data as follows,
The current ages of A and B are in the ratio 3 : 5
Therefore, x : y = 3 : 5
The above equation can also be written as,
$\dfrac{x}{y}=\dfrac{3}{5}$ …………………………………………………………….. (1)
Also, After eight years the ratio of ages of A and B will become 5 : 7
Therefore, x + 8 : y + 8 = 5 : 7
The above equation can also be written as,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$ ………………………………………………………… (2)
As we have written the given data therefore we will write the equation (1) and equation (2) one by one,
Therefore equation (1) will become,
$\dfrac{x}{y}=\dfrac{3}{5}$
By cross multiplication in the above equation we will get,
$\Rightarrow 5\times x=3\times y$
If we shift 5 on the right hand side of the equation we will get,
$\Rightarrow x=\dfrac{3\times y}{5}$
$\Rightarrow x=\dfrac{3}{5}y$ ………………………………………………………. (3)
Also equation (2) will become,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$
By cross multiplication in the above equation we will get,
$\Rightarrow 7\times \left( x+8 \right)=5\times \left( y+8 \right)$
If we multiply the constants inside the bracket we will get,
$\Rightarrow 7\times x+7\times 8=5\times y+5\times 8$
$\Rightarrow 7x+56=5y+40$
$\Rightarrow 56-40=5y-7x$
$\Rightarrow 16=5y-7x$
By rearranging the above equation we will get,
$\Rightarrow 5y-7x=16$
Now we will put the value of equation (3) in the above equation therefore we will get,
$\Rightarrow 5y-7\times \left( \dfrac{3}{5}y \right)=16$
$\Rightarrow 5y-\dfrac{21}{5}y=16$
If we multiply by 5 on both sides of the equation we will get,
$\Rightarrow 5\times 5y-5\times \dfrac{21}{5}y=5\times 16$
$\Rightarrow 25y-21y=80$
$\Rightarrow 4y=80$
$\Rightarrow y=\dfrac{80}{4}$
Therefore, y = 20 …………………………………………………. (4)
Therefore the current age of B is 20 years.
Now we will put the value of equation (4) in equation (3), therefore we will get,
\[\Rightarrow x=\dfrac{3}{5}\times 20\]
\[\Rightarrow x=3\times 4\]
Therefore, x = 12
Therefore the current age of A is 12 years.
Therefore the ages of A and B are 12 years and 20 years respectively.
Note: You can use A and B as the ages directly in place of using the variables so that you can get the direct answers in terms of A and B.
Last updated date: 23rd Sep 2023
•
Total views: 360.9k
•
Views today: 4.60k
Recently Updated Pages
What do you mean by public facilities

Please Write an Essay on Disaster Management

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the past tense of read class 10 english CBSE
