
The ages of A and B are in the ratio 3 : 5; eight years later their ages will be in the ratio 5 : 7. Find their current ages.
Answer
606.6k+ views
Hint: Assume the ages of A and B as variables and apply the two conditions to get the system equations with two variables. Solve these equations and you will get the current ages of A and B.
Complete step-by-step answer:
To solve the given problem we will assume the current age of A as ‘x’ and the current age of B as ‘y’. By using the notations we will write the given data as follows,
The current ages of A and B are in the ratio 3 : 5
Therefore, x : y = 3 : 5
The above equation can also be written as,
$\dfrac{x}{y}=\dfrac{3}{5}$ …………………………………………………………….. (1)
Also, After eight years the ratio of ages of A and B will become 5 : 7
Therefore, x + 8 : y + 8 = 5 : 7
The above equation can also be written as,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$ ………………………………………………………… (2)
As we have written the given data therefore we will write the equation (1) and equation (2) one by one,
Therefore equation (1) will become,
$\dfrac{x}{y}=\dfrac{3}{5}$
By cross multiplication in the above equation we will get,
$\Rightarrow 5\times x=3\times y$
If we shift 5 on the right hand side of the equation we will get,
$\Rightarrow x=\dfrac{3\times y}{5}$
$\Rightarrow x=\dfrac{3}{5}y$ ………………………………………………………. (3)
Also equation (2) will become,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$
By cross multiplication in the above equation we will get,
$\Rightarrow 7\times \left( x+8 \right)=5\times \left( y+8 \right)$
If we multiply the constants inside the bracket we will get,
$\Rightarrow 7\times x+7\times 8=5\times y+5\times 8$
$\Rightarrow 7x+56=5y+40$
$\Rightarrow 56-40=5y-7x$
$\Rightarrow 16=5y-7x$
By rearranging the above equation we will get,
$\Rightarrow 5y-7x=16$
Now we will put the value of equation (3) in the above equation therefore we will get,
$\Rightarrow 5y-7\times \left( \dfrac{3}{5}y \right)=16$
$\Rightarrow 5y-\dfrac{21}{5}y=16$
If we multiply by 5 on both sides of the equation we will get,
$\Rightarrow 5\times 5y-5\times \dfrac{21}{5}y=5\times 16$
$\Rightarrow 25y-21y=80$
$\Rightarrow 4y=80$
$\Rightarrow y=\dfrac{80}{4}$
Therefore, y = 20 …………………………………………………. (4)
Therefore the current age of B is 20 years.
Now we will put the value of equation (4) in equation (3), therefore we will get,
\[\Rightarrow x=\dfrac{3}{5}\times 20\]
\[\Rightarrow x=3\times 4\]
Therefore, x = 12
Therefore the current age of A is 12 years.
Therefore the ages of A and B are 12 years and 20 years respectively.
Note: You can use A and B as the ages directly in place of using the variables so that you can get the direct answers in terms of A and B.
Complete step-by-step answer:
To solve the given problem we will assume the current age of A as ‘x’ and the current age of B as ‘y’. By using the notations we will write the given data as follows,
The current ages of A and B are in the ratio 3 : 5
Therefore, x : y = 3 : 5
The above equation can also be written as,
$\dfrac{x}{y}=\dfrac{3}{5}$ …………………………………………………………….. (1)
Also, After eight years the ratio of ages of A and B will become 5 : 7
Therefore, x + 8 : y + 8 = 5 : 7
The above equation can also be written as,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$ ………………………………………………………… (2)
As we have written the given data therefore we will write the equation (1) and equation (2) one by one,
Therefore equation (1) will become,
$\dfrac{x}{y}=\dfrac{3}{5}$
By cross multiplication in the above equation we will get,
$\Rightarrow 5\times x=3\times y$
If we shift 5 on the right hand side of the equation we will get,
$\Rightarrow x=\dfrac{3\times y}{5}$
$\Rightarrow x=\dfrac{3}{5}y$ ………………………………………………………. (3)
Also equation (2) will become,
$\dfrac{x+8}{y+8}=\dfrac{5}{7}$
By cross multiplication in the above equation we will get,
$\Rightarrow 7\times \left( x+8 \right)=5\times \left( y+8 \right)$
If we multiply the constants inside the bracket we will get,
$\Rightarrow 7\times x+7\times 8=5\times y+5\times 8$
$\Rightarrow 7x+56=5y+40$
$\Rightarrow 56-40=5y-7x$
$\Rightarrow 16=5y-7x$
By rearranging the above equation we will get,
$\Rightarrow 5y-7x=16$
Now we will put the value of equation (3) in the above equation therefore we will get,
$\Rightarrow 5y-7\times \left( \dfrac{3}{5}y \right)=16$
$\Rightarrow 5y-\dfrac{21}{5}y=16$
If we multiply by 5 on both sides of the equation we will get,
$\Rightarrow 5\times 5y-5\times \dfrac{21}{5}y=5\times 16$
$\Rightarrow 25y-21y=80$
$\Rightarrow 4y=80$
$\Rightarrow y=\dfrac{80}{4}$
Therefore, y = 20 …………………………………………………. (4)
Therefore the current age of B is 20 years.
Now we will put the value of equation (4) in equation (3), therefore we will get,
\[\Rightarrow x=\dfrac{3}{5}\times 20\]
\[\Rightarrow x=3\times 4\]
Therefore, x = 12
Therefore the current age of A is 12 years.
Therefore the ages of A and B are 12 years and 20 years respectively.
Note: You can use A and B as the ages directly in place of using the variables so that you can get the direct answers in terms of A and B.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

