Take any three consecutive odd numbers and find their product
Answer
Verified
Hint: In the number system numbers are divided as odd and even numbers. Now, let us take three consecutive odd numbers and multiply it.
Complete step-by-step answer: Natural Numbers: Counting numbers are called Natural Numbers. Examples: 1, 2, 3, 4, etc. Whole numbers: The natural numbers including 0 are called Whole Numbers. Examples: 0, 1, 2, 3, etc. Integers: The whole numbers including negative numbers are called Integers. Examples: -1,-2, -3, 0, 1, 2, 3 etc. Actually the number system is divided into two types Even Numbers. Odd Numbers. Even Numbers: The numbers which are divisible by 2. Examples: 2, 4, 6, etc. Odd Numbers: The numbers which are not divisible by 2. Examples: 1, 3, 5 etc. Consecutive Odd Numbers: The odd numbers that are one after another it means; Examples: \[\left( {1,3,5} \right)\]\[\left( {5,7,9} \right)\]\[\left( {11,13,15} \right)\] etc. Let us take three consecutive odd numbers \[\left( {5,7,9} \right)\] Now multiply it, Product of three consecutive odd numbers \[ = 5 \times 7 \times 9 = 315\]
Note: In such types of problems remind the whole number system and proceed with the given question. Remember the difference between even numbers and odd numbers.
×
Sorry!, This page is not available for now to bookmark.