Answer
Verified
448.8k+ views
Hint: We know that supplementary of any angle is the subtraction of that angle from ${{180}^{\circ }}$. So, in this problem we have given an angle of ${{40}^{\circ }}$so its supplementary angle is calculated by subtracting ${{40}^{\circ }}$from ${{180}^{\circ }}$. The result of this subtraction is the supplementary angle that we are looking for.
Complete step by step answer:
In the above problem, we are asked to find the supplementary angle of ${{40}^{\circ }}$.
The supplementary angle of any angle is equal to the subtraction of that angle from ${{180}^{\circ }}$.
Let us assume angle $\theta $ is the angle with respect to which we have to find the supplementary angle and the supplementary angle be $\alpha $.
In the below diagram, we have shown a straight line along with the angle $\theta $ and angle $\alpha $.
As you can see that $\theta \And \alpha $ are forming the linear pairs so the summation of both these angles is equal to ${{180}^{\circ }}$.
Adding $\theta \And \alpha $ and equating it to ${{180}^{\circ }}$ we get,
$\begin{align}
& \theta +\alpha ={{180}^{\circ }} \\
& \Rightarrow \alpha ={{180}^{\circ }}-\theta ......Eq.(1) \\
\end{align}$
Now, we have assumed that $\alpha $ is the supplementary angle of $\theta $.
In the above question, we are asked to find the supplementary angle of ${{40}^{\circ }}$ so from the above description of supplementary angle, $\theta ={{40}^{\circ }}$ so substituting this value of $\theta $ in eq. (1) we will get the value of supplementary angle corresponding to ${{40}^{\circ }}$.
$\begin{align}
& \alpha ={{180}^{\circ }}-\theta \\
& \Rightarrow \alpha ={{180}^{\circ }}-{{40}^{\circ }} \\
& \Rightarrow \alpha ={{140}^{\circ }} \\
\end{align}$
Hence, we have found the supplementary angle of ${{40}^{\circ }}$ as ${{140}^{\circ }}$.
Note: You can cross check the value of supplementary angle of ${{40}^{\circ }}$ that we have calculated above by using the relation that sum of the angle and its supplement is ${{180}^{\circ }}$.
The angle is ${{40}^{\circ }}$ and its supplementary that we have calculated above is ${{140}^{\circ }}$. Now, the addition of these two angles must be equal to ${{180}^{\circ }}$.
${{40}^{\circ }}+{{140}^{\circ }}={{180}^{\circ }}$
Adding the left hand side of the above equation we get,
${{180}^{\circ }}={{180}^{\circ }}$
As you can see that L.H.S = R.H.S so the supplementary angle that we have calculated above is correct.
Complete step by step answer:
In the above problem, we are asked to find the supplementary angle of ${{40}^{\circ }}$.
The supplementary angle of any angle is equal to the subtraction of that angle from ${{180}^{\circ }}$.
Let us assume angle $\theta $ is the angle with respect to which we have to find the supplementary angle and the supplementary angle be $\alpha $.
In the below diagram, we have shown a straight line along with the angle $\theta $ and angle $\alpha $.
As you can see that $\theta \And \alpha $ are forming the linear pairs so the summation of both these angles is equal to ${{180}^{\circ }}$.
Adding $\theta \And \alpha $ and equating it to ${{180}^{\circ }}$ we get,
$\begin{align}
& \theta +\alpha ={{180}^{\circ }} \\
& \Rightarrow \alpha ={{180}^{\circ }}-\theta ......Eq.(1) \\
\end{align}$
Now, we have assumed that $\alpha $ is the supplementary angle of $\theta $.
In the above question, we are asked to find the supplementary angle of ${{40}^{\circ }}$ so from the above description of supplementary angle, $\theta ={{40}^{\circ }}$ so substituting this value of $\theta $ in eq. (1) we will get the value of supplementary angle corresponding to ${{40}^{\circ }}$.
$\begin{align}
& \alpha ={{180}^{\circ }}-\theta \\
& \Rightarrow \alpha ={{180}^{\circ }}-{{40}^{\circ }} \\
& \Rightarrow \alpha ={{140}^{\circ }} \\
\end{align}$
Hence, we have found the supplementary angle of ${{40}^{\circ }}$ as ${{140}^{\circ }}$.
Note: You can cross check the value of supplementary angle of ${{40}^{\circ }}$ that we have calculated above by using the relation that sum of the angle and its supplement is ${{180}^{\circ }}$.
The angle is ${{40}^{\circ }}$ and its supplementary that we have calculated above is ${{140}^{\circ }}$. Now, the addition of these two angles must be equal to ${{180}^{\circ }}$.
${{40}^{\circ }}+{{140}^{\circ }}={{180}^{\circ }}$
Adding the left hand side of the above equation we get,
${{180}^{\circ }}={{180}^{\circ }}$
As you can see that L.H.S = R.H.S so the supplementary angle that we have calculated above is correct.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE