Sum of the areas of two squares is 468 ${m^2}$. If the difference of their perimeters is 24 m, find the sides of the two squares.
Last updated date: 18th Mar 2023
•
Total views: 305.7k
•
Views today: 6.84k
Answer
305.7k+ views
Hint: Assume the sides of the squares as some variables. Form two equations using the conditions given in the question and solve them.
Complete step-by-step answer:
Let the side of the first square be $a$ and that of the second square be $A$.
Then the area of the first square $ = {a^2}$
And the area of the second square $ = {A^2}$
Their perimeters would be $4a$ and $4A$ respectively.
The difference of the perimeters of the squares is given as 24 m. So, we have:
$
\Rightarrow 4A - 4a = 24 \\
\Rightarrow 4\left( {A - a} \right) = 24 \\
\Rightarrow A - a = 6 .....(i) \\
$
And sum of their areas is given as 468 ${m^2}$:
$ \Rightarrow {A^2} + {a^2} = 468 .....(ii)$
Putting $A = a + 6$ from equation $(i)$ in equation $(ii)$, we’ll get:
$
\Rightarrow {\left( {a + 6} \right)^2} + {a^2} = 468 \\
\Rightarrow {a^2} + 36 + 12a + {a^2} = 468 \\
\Rightarrow 2{a^2} + 12a + 36 = 468 \\
\Rightarrow {a^2} + 6a + 18 = 234 \\
\Rightarrow {a^2} + 6a - 216 = 0 \\
\Rightarrow {a^2} + 18a - 12a - 216 = 0 \\
\Rightarrow a\left( {a + 18} \right) - 12\left( {a + 18} \right) = 0 \\
\Rightarrow \left( {a - 12} \right)\left( {a + 18} \right) = 0 \\
\Rightarrow a = 12{\text{ or }}a = - 18 \\
$
But the side of the square cannot be negative, $a = 12$ is the valid solution.
Putting the value of $a$ in equation $(i)$ we’ll get:
$
\Rightarrow A - 12 = 6 \\
\Rightarrow A = 18 \\
$
Thus, the side of the first square is 12 m and the side of the second square is 18 m.
Note: If we face any difficulty finding the roots of the quadratic equation $a{x^2} + bx + c = 0$ by simple factorization, we can apply the formula for finding roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Complete step-by-step answer:
Let the side of the first square be $a$ and that of the second square be $A$.
Then the area of the first square $ = {a^2}$
And the area of the second square $ = {A^2}$
Their perimeters would be $4a$ and $4A$ respectively.
The difference of the perimeters of the squares is given as 24 m. So, we have:
$
\Rightarrow 4A - 4a = 24 \\
\Rightarrow 4\left( {A - a} \right) = 24 \\
\Rightarrow A - a = 6 .....(i) \\
$
And sum of their areas is given as 468 ${m^2}$:
$ \Rightarrow {A^2} + {a^2} = 468 .....(ii)$
Putting $A = a + 6$ from equation $(i)$ in equation $(ii)$, we’ll get:
$
\Rightarrow {\left( {a + 6} \right)^2} + {a^2} = 468 \\
\Rightarrow {a^2} + 36 + 12a + {a^2} = 468 \\
\Rightarrow 2{a^2} + 12a + 36 = 468 \\
\Rightarrow {a^2} + 6a + 18 = 234 \\
\Rightarrow {a^2} + 6a - 216 = 0 \\
\Rightarrow {a^2} + 18a - 12a - 216 = 0 \\
\Rightarrow a\left( {a + 18} \right) - 12\left( {a + 18} \right) = 0 \\
\Rightarrow \left( {a - 12} \right)\left( {a + 18} \right) = 0 \\
\Rightarrow a = 12{\text{ or }}a = - 18 \\
$
But the side of the square cannot be negative, $a = 12$ is the valid solution.
Putting the value of $a$ in equation $(i)$ we’ll get:
$
\Rightarrow A - 12 = 6 \\
\Rightarrow A = 18 \\
$
Thus, the side of the first square is 12 m and the side of the second square is 18 m.
Note: If we face any difficulty finding the roots of the quadratic equation $a{x^2} + bx + c = 0$ by simple factorization, we can apply the formula for finding roots:
$ \Rightarrow x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
