
Sum of digits of a two-digit number is 9. When we interchange the digit it is found that the resulting new number is greater than the original number by 27. What is the two-digit number?
Answer
619.5k+ views
Hint: To solve the question, we form equations from the given information and solve those equations to unknow the value of digits of the two-digit number.
Complete step-by-step answer:
Let a, b be the tens and units digit of the two-digit number.
The given sum of the two digits of the two-digit number = 9
\[\Rightarrow \] a + b = 9 ………. (1)
The mathematical representation of the two-digit number with a, b at tens and units place respectively = 10a + b
Given that the digits at unit and tens place of two-digit number are reversed, the new two-digit number formed
= 10b + a
The new number formed exceeds the original number by the value 27.
\[\Rightarrow \] (10b + a) - (10a + b) = 27
9b - 9a = 27
9(b - a) = 27
b - a = 3 ………. (2)
By adding equations (1) and (2) we get
b - a + a + b = 9 + 3
2b = 12
\[\Rightarrow b=\dfrac{12}{2}=6\]
By substituting b value in equation (1) we get
a + 6 = 9
a = 9 – 6 = 3
Thus, the original number is equal to 10a + b
\[=\left( 10\times 3 \right)+6\]
= 30 + 6
= 36
\[\therefore \] The two-digit number is equal to 36.
Note: The possibility of mistake can be not using the mathematical representation of a two-digit number to ease the procedure of solving. The alternative procedure of solving can be using a hit-trial method for solving the equation, since a, b are digits of a number their values lie between 0, 9 and since a being the first digit of a two-digit number, it cannot be 0. Thus, we can try the other possible values and calculate the right answer.
Complete step-by-step answer:
Let a, b be the tens and units digit of the two-digit number.
The given sum of the two digits of the two-digit number = 9
\[\Rightarrow \] a + b = 9 ………. (1)
The mathematical representation of the two-digit number with a, b at tens and units place respectively = 10a + b
Given that the digits at unit and tens place of two-digit number are reversed, the new two-digit number formed
= 10b + a
The new number formed exceeds the original number by the value 27.
\[\Rightarrow \] (10b + a) - (10a + b) = 27
9b - 9a = 27
9(b - a) = 27
b - a = 3 ………. (2)
By adding equations (1) and (2) we get
b - a + a + b = 9 + 3
2b = 12
\[\Rightarrow b=\dfrac{12}{2}=6\]
By substituting b value in equation (1) we get
a + 6 = 9
a = 9 – 6 = 3
Thus, the original number is equal to 10a + b
\[=\left( 10\times 3 \right)+6\]
= 30 + 6
= 36
\[\therefore \] The two-digit number is equal to 36.
Note: The possibility of mistake can be not using the mathematical representation of a two-digit number to ease the procedure of solving. The alternative procedure of solving can be using a hit-trial method for solving the equation, since a, b are digits of a number their values lie between 0, 9 and since a being the first digit of a two-digit number, it cannot be 0. Thus, we can try the other possible values and calculate the right answer.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

