
Sum of digits of a two-digit number is 9. When we interchange the digit it is found that the resulting new number is greater than the original number by 27. What is the two-digit number?
Answer
531k+ views
Hint: To solve the question, we form equations from the given information and solve those equations to unknow the value of digits of the two-digit number.
Complete step-by-step answer:
Let a, b be the tens and units digit of the two-digit number.
The given sum of the two digits of the two-digit number = 9
\[\Rightarrow \] a + b = 9 ………. (1)
The mathematical representation of the two-digit number with a, b at tens and units place respectively = 10a + b
Given that the digits at unit and tens place of two-digit number are reversed, the new two-digit number formed
= 10b + a
The new number formed exceeds the original number by the value 27.
\[\Rightarrow \] (10b + a) - (10a + b) = 27
9b - 9a = 27
9(b - a) = 27
b - a = 3 ………. (2)
By adding equations (1) and (2) we get
b - a + a + b = 9 + 3
2b = 12
\[\Rightarrow b=\dfrac{12}{2}=6\]
By substituting b value in equation (1) we get
a + 6 = 9
a = 9 – 6 = 3
Thus, the original number is equal to 10a + b
\[=\left( 10\times 3 \right)+6\]
= 30 + 6
= 36
\[\therefore \] The two-digit number is equal to 36.
Note: The possibility of mistake can be not using the mathematical representation of a two-digit number to ease the procedure of solving. The alternative procedure of solving can be using a hit-trial method for solving the equation, since a, b are digits of a number their values lie between 0, 9 and since a being the first digit of a two-digit number, it cannot be 0. Thus, we can try the other possible values and calculate the right answer.
Complete step-by-step answer:
Let a, b be the tens and units digit of the two-digit number.
The given sum of the two digits of the two-digit number = 9
\[\Rightarrow \] a + b = 9 ………. (1)
The mathematical representation of the two-digit number with a, b at tens and units place respectively = 10a + b
Given that the digits at unit and tens place of two-digit number are reversed, the new two-digit number formed
= 10b + a
The new number formed exceeds the original number by the value 27.
\[\Rightarrow \] (10b + a) - (10a + b) = 27
9b - 9a = 27
9(b - a) = 27
b - a = 3 ………. (2)
By adding equations (1) and (2) we get
b - a + a + b = 9 + 3
2b = 12
\[\Rightarrow b=\dfrac{12}{2}=6\]
By substituting b value in equation (1) we get
a + 6 = 9
a = 9 – 6 = 3
Thus, the original number is equal to 10a + b
\[=\left( 10\times 3 \right)+6\]
= 30 + 6
= 36
\[\therefore \] The two-digit number is equal to 36.
Note: The possibility of mistake can be not using the mathematical representation of a two-digit number to ease the procedure of solving. The alternative procedure of solving can be using a hit-trial method for solving the equation, since a, b are digits of a number their values lie between 0, 9 and since a being the first digit of a two-digit number, it cannot be 0. Thus, we can try the other possible values and calculate the right answer.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Dr BR Ambedkars fathers name was Ramaji Sakpal and class 10 social science CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What is the full form of POSCO class 10 social science CBSE

Change the following sentences into negative and interrogative class 10 english CBSE
