# Sum of \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms.

A. \[\dfrac{{1 + \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 + a}}\]

B. \[\dfrac{{1 - 2\left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} + \dfrac{{n{a^n}}}{{1 - 2a}}\]

C. \[\dfrac{{1 - \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 - a}}\]

D. None of these

Last updated date: 16th Mar 2023

•

Total views: 303.6k

•

Views today: 4.83k

Answer

Verified

303.6k+ views

Hint: In the given series the \[nth\] term is \[n{a^{n - 1}}\]. The sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]. So, use this concept to reach the solution of the problem.

Complete step-by-step answer:

Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]

Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]

Multiplying both sides with ‘\[a\]’, we get

\[

\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\

\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\

\]

Subtracting equation (2) from (1), we get

\[

\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\

\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\

\]

Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]

We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].

By using the above formula, we have

\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]

Dividing both sides with \[\left( {1 - a} \right)\], we get

\[

\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\

\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\

\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\

\]

Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]

Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]

Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.

Complete step-by-step answer:

Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]

Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]

Multiplying both sides with ‘\[a\]’, we get

\[

\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\

\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\

\]

Subtracting equation (2) from (1), we get

\[

\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\

\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\

\]

Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]

We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].

By using the above formula, we have

\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]

Dividing both sides with \[\left( {1 - a} \right)\], we get

\[

\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\

\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\

\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\

\]

Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]

Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]

Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.

Recently Updated Pages

If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE