
Sum of \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms.
A. \[\dfrac{{1 + \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 + a}}\]
B. \[\dfrac{{1 - 2\left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} + \dfrac{{n{a^n}}}{{1 - 2a}}\]
C. \[\dfrac{{1 - \left( {{a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{1 - a}}\]
D. None of these
Answer
605.4k+ views
Hint: In the given series the \[nth\] term is \[n{a^{n - 1}}\]. The sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\]. So, use this concept to reach the solution of the problem.
Complete step-by-step answer:
Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]
Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]
Multiplying both sides with ‘\[a\]’, we get
\[
\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\
\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\
\]
Subtracting equation (2) from (1), we get
\[
\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\
\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\
\]
Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]
We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
By using the above formula, we have
\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]
Dividing both sides with \[\left( {1 - a} \right)\], we get
\[
\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\
\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\]
Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.
Complete step-by-step answer:
Let \[S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + nth{\text{ term}}\]
Clearly, \[nth\] term is \[n{a^{n - 1}}\]\[ \Rightarrow S = 1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}.....................................\left( 1 \right)\]
Multiplying both sides with ‘\[a\]’, we get
\[
\Rightarrow Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + n{a^{n - 1}}} \right)a \\
\Rightarrow Sa = 0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + \left( {n - 1} \right){a^{n - 1}} + n{a^n}...........................................\left( 2 \right) \\
\]
Subtracting equation (2) from (1), we get
\[
\Rightarrow S - Sa = \left( {1 + 2a + 3{a^2} + 4{a^3} + ......................... + \;n{a^{n - 1}}} \right) - \left( {0 + a + 2{a^2} + 3{a^3} + 4{a^4} + ......................... + n{a^n}} \right) \\
\Rightarrow S\left( {1 - a} \right) = 1 + a + {a^2} + {a^3} + .............................. + {a^{n - 1}} - n{a^n} \\
\]
Clearly, the above series is in G.P of\[n\]terms with first term 1 and common ratio \[a\]
We know that, the sum of the series of \[n\]terms in a Geometric Progression (G.P) with first term \[a\] and common ratio \[r\]is given by \[{S_n} = \dfrac{{a\left( {{r^n} - 1} \right)}}{{r - 1}}\].
By using the above formula, we have
\[ \Rightarrow S\left( {1 - a} \right) = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} - n{a^n}\]
Dividing both sides with \[\left( {1 - a} \right)\], we get
\[
\Rightarrow \dfrac{{S\left( {1 - a} \right)}}{{\left( {1 - a} \right)}} = \dfrac{{1\left( {{a^n} - 1} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{1}{{\left( {1 - a} \right)}} - n{a^n} \times \dfrac{1}{{\left( {1 - a} \right)}} \\
\Rightarrow S = \dfrac{{ - 1\left( {1 - {a^n}} \right)}}{{\left( {a - 1} \right)}} \times \dfrac{{ - 1}}{{\left( {a - 1} \right)}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\therefore S = \dfrac{{1\left( {1 - {a^n}} \right)}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}} \\
\]
Therefore, the sum of the \[1 + 2a + 3{a^2} + 4{a^3} + ........................{\text{ to }}n\]terms is \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Thus, the correct option is C. \[\dfrac{{1 - {a^n}}}{{{{\left( {a - 1} \right)}^2}}} - \dfrac{{n{a^n}}}{{\left( {1 - a} \right)}}\]
Note: In equation (2) we added 0 as the first term so that you can subtract it from the equation (1) with no confusion. This has been done only for your understanding. Any way by doing this the value of the equation (2) doesn’t change. And observe that \[S\left( {1 - a} \right)\] has \[n + 1\]terms but, we have taken only \[n\]terms for the summation of the series by leaving the last term as it is.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

