
How many sub-committees consisting of five members can be formed from a committee consisting of $ 8 $ gentlemen and $ 6 $ ladies so as to include at least $ 2 $ gentlemen and $ 2 $ ladies?
Answer
550.8k+ views
Hint: Since in this we have to find the combination of five members in which there should be at least $ 2 $ gentleman and $ 2 $ ladies. For this, we will use the concept of combination. So the combination would be like $ 2 $ gentlemen and $ 5 $ ladies or it can be $ 3 $ gentleman and $ 2 $ ladies. And on solving this combination, we will get the answer.
Formula used:
Combination of $ n $ items taken $ r $ at a time
$ c\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Here,
$ n $ , will be the elements of the set
$ r $ , will be the number of elements selected from the set
Complete step-by-step answer:
Since it is given that there will be five members that can be formed from a committee consisting of $ 8 $ gentlemen and $ 6 $ ladies and also there should be only inclusion of at least $ 2 $ gentleman and $ 2 $ ladies.
So for this, the pair would be like following, $ 2 $ gentleman and $ 3 $ ladies or it can be $ 3 $ gentleman and $ 2 $ ladies.
And mathematically this pair of combination can be written as
$ \Rightarrow \left[ {{}^8{C_2} \times {}^6{C_3}} \right] + \left[ {{}^8{C_3} \times {}^6{C_2}} \right] $
Now by using the combination formula, on substituting the values in the formula we get
\[ \Rightarrow \left[ {\dfrac{{8!}}{{2!\left( {8 - 2} \right)!}} \times \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}}} \right] + \left[ {\dfrac{{8!}}{{3!\left( {8 - 3} \right)!}} \times \dfrac{{6!}}{{2!\left( {6 - 2} \right)!}}} \right]\]
Now on solving the small braces first we get
\[ \Rightarrow \left[ {\dfrac{{8!}}{{2!\left( 6 \right)!}} \times \dfrac{{6!}}{{3!\left( 3 \right)!}}} \right] + \left[ {\dfrac{{8!}}{{3!\left( 5 \right)!}} \times \dfrac{{6!}}{{2!\left( 4 \right)!}}} \right]\]
On expanding the above equation for solving, we get
\[ \Rightarrow \left[ {\dfrac{{8 \times 7 \times 6!}}{{2!\left( 6 \right)!}} \times \dfrac{{6 \times 5 \times 4 \times 3!}}{{3 \times 2\left( 3 \right)!}}} \right] + \left[ {\dfrac{{8 \times 7 \times 6 \times 5!}}{{3 \times 2 \times 1\left( 5 \right)!}} \times \dfrac{{6 \times 5 \times 4!}}{{2!\left( 4 \right)!}}} \right]\]
On canceling the like terms and reducing the fractions into the simplest form possible, we get
$ \Rightarrow \left[ {28 \times 20} \right] + \left[ {56 \times 15} \right] $
On solving the multiplication of the above line, we get it as
$ \Rightarrow \left[ {560} \right] + \left[ {840} \right] $
And on adding it, we get
$ \Rightarrow 1400 $
Hence, $ 1400 $ sub-committees consisting of five members can be formed.
So, the correct answer is “1400”.
Note: For solving this type of problem we need to read the problem properly and then act accordingly. Also, we should know that in combination the order does not matter. So while solving it we should not consider the order. So by using the simple formula we solve such questions.
Formula used:
Combination of $ n $ items taken $ r $ at a time
$ c\left( {n,r} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $
Here,
$ n $ , will be the elements of the set
$ r $ , will be the number of elements selected from the set
Complete step-by-step answer:
Since it is given that there will be five members that can be formed from a committee consisting of $ 8 $ gentlemen and $ 6 $ ladies and also there should be only inclusion of at least $ 2 $ gentleman and $ 2 $ ladies.
So for this, the pair would be like following, $ 2 $ gentleman and $ 3 $ ladies or it can be $ 3 $ gentleman and $ 2 $ ladies.
And mathematically this pair of combination can be written as
$ \Rightarrow \left[ {{}^8{C_2} \times {}^6{C_3}} \right] + \left[ {{}^8{C_3} \times {}^6{C_2}} \right] $
Now by using the combination formula, on substituting the values in the formula we get
\[ \Rightarrow \left[ {\dfrac{{8!}}{{2!\left( {8 - 2} \right)!}} \times \dfrac{{6!}}{{3!\left( {6 - 3} \right)!}}} \right] + \left[ {\dfrac{{8!}}{{3!\left( {8 - 3} \right)!}} \times \dfrac{{6!}}{{2!\left( {6 - 2} \right)!}}} \right]\]
Now on solving the small braces first we get
\[ \Rightarrow \left[ {\dfrac{{8!}}{{2!\left( 6 \right)!}} \times \dfrac{{6!}}{{3!\left( 3 \right)!}}} \right] + \left[ {\dfrac{{8!}}{{3!\left( 5 \right)!}} \times \dfrac{{6!}}{{2!\left( 4 \right)!}}} \right]\]
On expanding the above equation for solving, we get
\[ \Rightarrow \left[ {\dfrac{{8 \times 7 \times 6!}}{{2!\left( 6 \right)!}} \times \dfrac{{6 \times 5 \times 4 \times 3!}}{{3 \times 2\left( 3 \right)!}}} \right] + \left[ {\dfrac{{8 \times 7 \times 6 \times 5!}}{{3 \times 2 \times 1\left( 5 \right)!}} \times \dfrac{{6 \times 5 \times 4!}}{{2!\left( 4 \right)!}}} \right]\]
On canceling the like terms and reducing the fractions into the simplest form possible, we get
$ \Rightarrow \left[ {28 \times 20} \right] + \left[ {56 \times 15} \right] $
On solving the multiplication of the above line, we get it as
$ \Rightarrow \left[ {560} \right] + \left[ {840} \right] $
And on adding it, we get
$ \Rightarrow 1400 $
Hence, $ 1400 $ sub-committees consisting of five members can be formed.
So, the correct answer is “1400”.
Note: For solving this type of problem we need to read the problem properly and then act accordingly. Also, we should know that in combination the order does not matter. So while solving it we should not consider the order. So by using the simple formula we solve such questions.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

