
State True or False. If $a$,$b$,$c$ are in A.P., then $b + c$,$c + a$,$a + b$ are also in A.P.
$A$. $True$
$B$.$False$
Answer
609k+ views
Hint: The above problem is related to arithmetic progression. First, we should be able to define an arithmetic sequence. After that its properties can be used to solve the above problem.
Arithmetic Progression is a sequence of numbers such that the difference of any two consecutive numbers is constant.
General ${n^{th}}$ term of an A.P. is given by: ${a_n} = a + \left( {n - 1} \right)d$
Where $a$ is the first term of the A.P. sequence and $d$ is known as the common difference.
Given in the problem, $a$,$b$,$c$ are in A.P.
$ \Rightarrow $First term $ = a$
$ \Rightarrow $Second term $ = a + d = b$
$ \Rightarrow $Third term $ = a + 2d = c$
$ \Rightarrow b - a = c - b = d$ ……………………………….. (1)
Here $d$ is the common difference.
Since we need to check whether $b + c$,$c + a$,$a + b$ are in A.P. or not.
We need to find the common difference of the consecutive terms.
$ \Rightarrow c + a - \left( {b + c} \right) = c + a - b - c = a - b$
Using equation (1) in above, we get
$c + a - \left( {b + c} \right) = a - b = - d$ ………………………….(2)
Similarly,
$a + b - \left( {c + a} \right) = a + b - c - a = b - c$
$ \Rightarrow a + b - \left( {c + a} \right) = b - c = - d$ ………………...(3)
From (2) and (3) , the common difference of the consecutive terms is equal.
$ \Rightarrow $$b + c$,$c + a$,$a + b$ are in A.P.
Hence option $(A)$ is the correct answer.
Note: While solving problems related to A. P like above, always try to first write the general term of the A.P. sequence. It is to be observed that if each term of an A.P. is added with a fixed number, then the new obtained sequence is also in A.P.
Arithmetic Progression is a sequence of numbers such that the difference of any two consecutive numbers is constant.
General ${n^{th}}$ term of an A.P. is given by: ${a_n} = a + \left( {n - 1} \right)d$
Where $a$ is the first term of the A.P. sequence and $d$ is known as the common difference.
Given in the problem, $a$,$b$,$c$ are in A.P.
$ \Rightarrow $First term $ = a$
$ \Rightarrow $Second term $ = a + d = b$
$ \Rightarrow $Third term $ = a + 2d = c$
$ \Rightarrow b - a = c - b = d$ ……………………………….. (1)
Here $d$ is the common difference.
Since we need to check whether $b + c$,$c + a$,$a + b$ are in A.P. or not.
We need to find the common difference of the consecutive terms.
$ \Rightarrow c + a - \left( {b + c} \right) = c + a - b - c = a - b$
Using equation (1) in above, we get
$c + a - \left( {b + c} \right) = a - b = - d$ ………………………….(2)
Similarly,
$a + b - \left( {c + a} \right) = a + b - c - a = b - c$
$ \Rightarrow a + b - \left( {c + a} \right) = b - c = - d$ ………………...(3)
From (2) and (3) , the common difference of the consecutive terms is equal.
$ \Rightarrow $$b + c$,$c + a$,$a + b$ are in A.P.
Hence option $(A)$ is the correct answer.
Note: While solving problems related to A. P like above, always try to first write the general term of the A.P. sequence. It is to be observed that if each term of an A.P. is added with a fixed number, then the new obtained sequence is also in A.P.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

