Answer

Verified

399k+ views

**Hint:**Resistors are said to be in a parallel state when both the terminals of the resistors are connected to each terminal of the other resistors. The resistors in parallel have a common voltage across all the resistors. Here, we will use four resistors connected in parallel to find the law of combination of resistances.

**Complete answer:**

The figure below shows the circuit in which the resistors are placed parallel to each other.

Let ${R_1}$ , ${R_2}$ , ${R_3}$ and ${R_4}$ are resistors that are connected parallel to each other. Here, the voltage drop across each resistor will be the same but the electric current in the circuit will divide itself to travel through all the different branches. Now. to derive the equation of resistance in parallel, we will use Ohm’s law which is given by

$V = IR$

$I = \dfrac{V}{R}$

Here, $I$ is the current in the circuit, $V$ is the voltage, and $R$ is the resistance in the circuit.

Now, according to Kirchhoff’s law, we get

$\sum {{I_{in}}\, = \,\sum {{I_{out}}} } $

$ \Rightarrow \,I = {I_1} + {I_2}$

$I = \dfrac{{{V_1}}}{{{R_1}}} + \dfrac{{{V_2}}}{{{R_2}}}$

Since the voltage drop across the resistors is the same. Therefore,

$I = \dfrac{V}{{{R_1}}} + \dfrac{V}{{{R_2}}}$

$ \Rightarrow \,I = V\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$

$ \Rightarrow \,\dfrac{I}{V} = \left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)$

$ \Rightarrow \,{R_p} = {\left( {\dfrac{1}{{{R_1}}} - \dfrac{1}{{{R_2}}}} \right)^{ - 1}}$

Therefore, the resistance in the parallel series are

$\therefore{R_p} = {\left( {\dfrac{1}{{{R_1}}} + \dfrac{1}{{{R_2}}} + ...... + \dfrac{1}{{{R_{n - 1}}}} + \dfrac{1}{{{R_n}}}} \right)^{ - 1}}$

This means that the combined resistance in the parallel circuit will be equal to the sum of the reciprocal of all the individual resistances.Therefore, the law of combination of resistances in parallel states that the reciprocal of the combined resistance of all the resistors connected in parallel is equal to the sum of the reciprocal of all the individual resistance.

**Note:**In a parallel resistor circuit, the voltage across all the resistors will be the same. Therefore, the voltage in the resistor ${R_1}$ will be equal to the voltage in the resistor ${R_2}$ and is also equal to the voltage in the resistor ${R_3}$ . That is why we have used the same voltage for all the resistances.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE