Square root of $\dfrac{1}{{xyz}}\left( {{x^2} + {y^2} + {z^2}} \right) + 2\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$ is,
A) $\sqrt {\dfrac{x}{{yz}}} + \sqrt {\dfrac{y}{{zx}}} + \sqrt {\dfrac{z}{{xy}}} $
B) $\sqrt {\dfrac{{yz}}{x}} + \sqrt {\dfrac{{zx}}{y}} + \sqrt {\dfrac{{xy}}{z}} $
C) ${\left( {\dfrac{x}{{yz}}} \right)^2} + {\left( {\dfrac{y}{{zx}}} \right)^2} + {\left( {\dfrac{z}{{xy}}} \right)^2}$
D) ${\left( {\dfrac{{yz}}{x}} \right)^{\dfrac{1}{2}}} + {\left( {\dfrac{{zx}}{y}} \right)^{\dfrac{1}{2}}} + {\left( {\dfrac{{xy}}{z}} \right)^{\dfrac{1}{2}}}$
Answer
Verified
458.1k+ views
Hint: First, take LCM in the second term. After that take $\dfrac{1}{{xyz}}$ common from both terms. Then use the formula ${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)$ to make the square of sum of x, y, and z. After that take the square root of the terms. Then multiply each variable by the common and cancel out the common factors to get the desired result.
Complete step-by-step solution:
Given:- $\dfrac{1}{{xyz}}\left( {{x^2} + {y^2} + {z^2}} \right) + 2\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$
Take LCM in the second terms,
$ \Rightarrow \dfrac{1}{{xyz}}\left( {{x^2} + {y^2} + {z^2}} \right) + 2\left( {\dfrac{{yz + zx + xy}}{{xyz}}} \right)$
Now take $\dfrac{1}{{xyz}}$ common from both terms,
$ \Rightarrow \dfrac{1}{{xyz}}\left[ {{x^2} + {y^2} + {z^2} + 2\left( {xy + yz + zx} \right)} \right]$
We know that,
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)$
Use the formula in the above expression,
$ \Rightarrow \dfrac{1}{{xyz}}{\left( {x + y + z} \right)^2}$
Take square root on the expression,
$ \Rightarrow \sqrt {\dfrac{1}{{xyz}}{{\left( {x + y + z} \right)}^2}} $
Simplify the expression,
$ \Rightarrow \dfrac{1}{{\sqrt {xyz} }}\sqrt {{{\left( {x + y + z} \right)}^2}} $
Cancel out root with the power,
$ \Rightarrow \dfrac{1}{{\sqrt {xyz} }}\left( {x + y + z} \right)$
Multiply the common factor with each term,
\[ \Rightarrow \dfrac{x}{{\sqrt {xyz} }} + \dfrac{y}{{\sqrt {xyz} }} + \dfrac{z}{{\sqrt {xyz} }}\]
Use the identity $x = {\left( {\sqrt x } \right)^2}$,
\[ \Rightarrow \dfrac{{{{\left( {\sqrt x } \right)}^2}}}{{\sqrt {xyz} }} + \dfrac{{{{\left( {\sqrt y } \right)}^2}}}{{\sqrt {xyz} }} + \dfrac{{{{\left( {\sqrt z } \right)}^2}}}{{\sqrt {xyz} }}\]
Cancel out the common factors from each term,
\[ \Rightarrow \dfrac{{\sqrt x }}{{\sqrt {yz} }} + \dfrac{{\sqrt y }}{{\sqrt {xz} }} + \dfrac{{\sqrt z }}{{\sqrt {xy} }}\]
We know that,
$\dfrac{{\sqrt a }}{{\sqrt b }} = \sqrt {\dfrac{a}{b}} $
Use this in the above expression,
$\therefore \sqrt {\dfrac{x}{{yz}}} + \sqrt {\dfrac{y}{{zx}}} + \sqrt {\dfrac{z}{{xy}}} $
Thus, the square root is $\sqrt {\dfrac{x}{{yz}}} + \sqrt {\dfrac{y}{{zx}}} + \sqrt {\dfrac{z}{{xy}}} $.
Hence, option (A) is the correct answer.
Note: The students may start solving this question the wrong way by simply multiplying the common factor in the brackets. It will lead to either lengthy calculation or give the wrong result.
The square root of a number is a value, which on multiplied by itself gives the original number. Suppose, x is the square root of y, then it is represented as \[x = \sqrt y \] or we can express the same equation as ${x^2} = y$. Here, ’$\sqrt {} $’ is the radical symbol used to represent the root of numbers. The positive number, when multiplied by itself, represents the square of the number. The square root of the square of a positive number gives the original number.
Complete step-by-step solution:
Given:- $\dfrac{1}{{xyz}}\left( {{x^2} + {y^2} + {z^2}} \right) + 2\left( {\dfrac{1}{x} + \dfrac{1}{y} + \dfrac{1}{z}} \right)$
Take LCM in the second terms,
$ \Rightarrow \dfrac{1}{{xyz}}\left( {{x^2} + {y^2} + {z^2}} \right) + 2\left( {\dfrac{{yz + zx + xy}}{{xyz}}} \right)$
Now take $\dfrac{1}{{xyz}}$ common from both terms,
$ \Rightarrow \dfrac{1}{{xyz}}\left[ {{x^2} + {y^2} + {z^2} + 2\left( {xy + yz + zx} \right)} \right]$
We know that,
${\left( {a + b + c} \right)^2} = {a^2} + {b^2} + {c^2} + 2\left( {ab + bc + ca} \right)$
Use the formula in the above expression,
$ \Rightarrow \dfrac{1}{{xyz}}{\left( {x + y + z} \right)^2}$
Take square root on the expression,
$ \Rightarrow \sqrt {\dfrac{1}{{xyz}}{{\left( {x + y + z} \right)}^2}} $
Simplify the expression,
$ \Rightarrow \dfrac{1}{{\sqrt {xyz} }}\sqrt {{{\left( {x + y + z} \right)}^2}} $
Cancel out root with the power,
$ \Rightarrow \dfrac{1}{{\sqrt {xyz} }}\left( {x + y + z} \right)$
Multiply the common factor with each term,
\[ \Rightarrow \dfrac{x}{{\sqrt {xyz} }} + \dfrac{y}{{\sqrt {xyz} }} + \dfrac{z}{{\sqrt {xyz} }}\]
Use the identity $x = {\left( {\sqrt x } \right)^2}$,
\[ \Rightarrow \dfrac{{{{\left( {\sqrt x } \right)}^2}}}{{\sqrt {xyz} }} + \dfrac{{{{\left( {\sqrt y } \right)}^2}}}{{\sqrt {xyz} }} + \dfrac{{{{\left( {\sqrt z } \right)}^2}}}{{\sqrt {xyz} }}\]
Cancel out the common factors from each term,
\[ \Rightarrow \dfrac{{\sqrt x }}{{\sqrt {yz} }} + \dfrac{{\sqrt y }}{{\sqrt {xz} }} + \dfrac{{\sqrt z }}{{\sqrt {xy} }}\]
We know that,
$\dfrac{{\sqrt a }}{{\sqrt b }} = \sqrt {\dfrac{a}{b}} $
Use this in the above expression,
$\therefore \sqrt {\dfrac{x}{{yz}}} + \sqrt {\dfrac{y}{{zx}}} + \sqrt {\dfrac{z}{{xy}}} $
Thus, the square root is $\sqrt {\dfrac{x}{{yz}}} + \sqrt {\dfrac{y}{{zx}}} + \sqrt {\dfrac{z}{{xy}}} $.
Hence, option (A) is the correct answer.
Note: The students may start solving this question the wrong way by simply multiplying the common factor in the brackets. It will lead to either lengthy calculation or give the wrong result.
The square root of a number is a value, which on multiplied by itself gives the original number. Suppose, x is the square root of y, then it is represented as \[x = \sqrt y \] or we can express the same equation as ${x^2} = y$. Here, ’$\sqrt {} $’ is the radical symbol used to represent the root of numbers. The positive number, when multiplied by itself, represents the square of the number. The square root of the square of a positive number gives the original number.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE