Answer

Verified

451.2k+ views

Hint: since the budget is given but neither the no, of students nor the cost per student but we can form an algebraic equation from this by equating the product of no. of students and cost per student to the budget. Using the second condition we can form another algebraic equation and then proceed further.

Complete step-by-step answer:

Let the no. of students be X

Let the cost per student be Y

∴ XY = 480

\[ \Rightarrow \]Y = \[\dfrac{{480}}{X}\]

Now, 8 students didn’t arrived, each food would have cost Rs. 10 more

\[ \Rightarrow \] (X – 8)(y + 10) = 480

\[ \Rightarrow \]\[(X - 8)\left( {\dfrac{{480}}{X} + 10} \right) = 0\]

\[ \Rightarrow \]\[{X^2} - 8X - 384 = 0\]

\[ \Rightarrow \]\[{X^2} + 16X - 24X - 320 = 0\]

\[ \Rightarrow \]\[\left( {X{\text{ }} - {\text{ }}24} \right)\left( {X{\text{ }} + {\text{ }}16} \right){\text{ }} = {\text{ }}0\]

So \[X{\text{ }} = {\text{ }}24\] or \[ - 16\]

Since no. of students cannot be negative therefore -16 is discarded’

∴ No. of students = 24.

Thus the no. of students went for picnic = 24 – 8 = 16

So, the correct option is ‘B’.

Note: The quadratic equation in this question can also be solved by using quadratic formula i.e.

\[ \Rightarrow \]\[X = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] Where a is coefficient of \[{X^2}\], b is coefficient of \[X\] and c is the constant.

Complete step-by-step answer:

Let the no. of students be X

Let the cost per student be Y

∴ XY = 480

\[ \Rightarrow \]Y = \[\dfrac{{480}}{X}\]

Now, 8 students didn’t arrived, each food would have cost Rs. 10 more

\[ \Rightarrow \] (X – 8)(y + 10) = 480

\[ \Rightarrow \]\[(X - 8)\left( {\dfrac{{480}}{X} + 10} \right) = 0\]

\[ \Rightarrow \]\[{X^2} - 8X - 384 = 0\]

\[ \Rightarrow \]\[{X^2} + 16X - 24X - 320 = 0\]

\[ \Rightarrow \]\[\left( {X{\text{ }} - {\text{ }}24} \right)\left( {X{\text{ }} + {\text{ }}16} \right){\text{ }} = {\text{ }}0\]

So \[X{\text{ }} = {\text{ }}24\] or \[ - 16\]

Since no. of students cannot be negative therefore -16 is discarded’

∴ No. of students = 24.

Thus the no. of students went for picnic = 24 – 8 = 16

So, the correct option is ‘B’.

Note: The quadratic equation in this question can also be solved by using quadratic formula i.e.

\[ \Rightarrow \]\[X = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}\] Where a is coefficient of \[{X^2}\], b is coefficient of \[X\] and c is the constant.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Guru Purnima speech in English in 100 words class 7 english CBSE

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Select the word that is correctly spelled a Twelveth class 10 english CBSE