
How do you solve \[{{x}^{2}}-7x-6=0\] using the quadratic formula?
Answer
525.9k+ views
Hint: Compare the given quadratic equation with the general form given as: - \[a{{x}^{2}}+bx+c=0\]. Find the respective values of a, b and c. Now, find the discriminant of the given quadratic equation by using the formula: - \[D={{b}^{2}}-4ac\], where ‘D’ is the notation for the discriminant. Now, apply the formula: - \[x=\dfrac{-b\pm \sqrt{D}}{2a}\] and substitute the required values to get the answer.
Complete step by step solution:
Here, we have been provided with a quadratic equation: - \[{{x}^{2}}-7x-6=0\] and we are asked to solve it. That means we have to find the values of x. So, let us apply the discriminant method to solve the given quadratic equation.
Now, comparing the general form of a quadratic equation: - \[a{{x}^{2}}+bx+c=0\] with the given equation: \[{{x}^{2}}-7x-6=0\], we can conclude that, we have,
\[\Rightarrow \] a = 1, b = -7 and c = -6.
Applying the formula for discriminant of a quadratic equation given as: - \[D={{b}^{2}}-4ac\], where ‘D’ is the discriminant, we get,
\[\begin{align}
& \Rightarrow D={{\left( -7 \right)}^{2}}-4\times 1\times \left( -6 \right) \\
& \Rightarrow D=49+24 \\
& \Rightarrow D=73 \\
\end{align}\]
Now, we know that the solution of a quadratic equation in terms of its discriminant value is given as: -
\[\Rightarrow x=\dfrac{-b\pm \sqrt{D}}{2a}\]
So, substituting the given values and obtained values of D, we get,
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( -7 \right)\pm \sqrt{73}}{2\times 1} \\
& \Rightarrow x=\dfrac{7\pm \sqrt{73}}{2} \\
\end{align}\]
(i) Considering (+) sign we have,
\[\Rightarrow x=\dfrac{7+\sqrt{73}}{2}\]
(ii) Considering (-) sign we have,
\[\Rightarrow x=\dfrac{7-\sqrt{73}}{2}\]
Hence, the above two values of x are the roots or solution of the given quadratic equation.
Note:
One may note that we will not be able to use the middle term split method to solve the question. This is because it will be difficult for us to think of the factors like: \[\left( x-\dfrac{7-\sqrt{73}}{2} \right)\] and \[\left( x-\dfrac{7+\sqrt{73}}{2} \right)\]. You may apply the third method known as completing the square method to solve the question. In this method we have to convert the equation \[a{{x}^{2}}+bx+c=0\] into the form: - \[{{\left( x+\dfrac{b}{2a} \right)}^{2}}=\dfrac{D}{4{{a}^{2}}}\] and then by taking the square root we need to solve for the value of x. Remember that the discriminant formula is derived from completing the square method.
Complete step by step solution:
Here, we have been provided with a quadratic equation: - \[{{x}^{2}}-7x-6=0\] and we are asked to solve it. That means we have to find the values of x. So, let us apply the discriminant method to solve the given quadratic equation.
Now, comparing the general form of a quadratic equation: - \[a{{x}^{2}}+bx+c=0\] with the given equation: \[{{x}^{2}}-7x-6=0\], we can conclude that, we have,
\[\Rightarrow \] a = 1, b = -7 and c = -6.
Applying the formula for discriminant of a quadratic equation given as: - \[D={{b}^{2}}-4ac\], where ‘D’ is the discriminant, we get,
\[\begin{align}
& \Rightarrow D={{\left( -7 \right)}^{2}}-4\times 1\times \left( -6 \right) \\
& \Rightarrow D=49+24 \\
& \Rightarrow D=73 \\
\end{align}\]
Now, we know that the solution of a quadratic equation in terms of its discriminant value is given as: -
\[\Rightarrow x=\dfrac{-b\pm \sqrt{D}}{2a}\]
So, substituting the given values and obtained values of D, we get,
\[\begin{align}
& \Rightarrow x=\dfrac{-\left( -7 \right)\pm \sqrt{73}}{2\times 1} \\
& \Rightarrow x=\dfrac{7\pm \sqrt{73}}{2} \\
\end{align}\]
(i) Considering (+) sign we have,
\[\Rightarrow x=\dfrac{7+\sqrt{73}}{2}\]
(ii) Considering (-) sign we have,
\[\Rightarrow x=\dfrac{7-\sqrt{73}}{2}\]
Hence, the above two values of x are the roots or solution of the given quadratic equation.
Note:
One may note that we will not be able to use the middle term split method to solve the question. This is because it will be difficult for us to think of the factors like: \[\left( x-\dfrac{7-\sqrt{73}}{2} \right)\] and \[\left( x-\dfrac{7+\sqrt{73}}{2} \right)\]. You may apply the third method known as completing the square method to solve the question. In this method we have to convert the equation \[a{{x}^{2}}+bx+c=0\] into the form: - \[{{\left( x+\dfrac{b}{2a} \right)}^{2}}=\dfrac{D}{4{{a}^{2}}}\] and then by taking the square root we need to solve for the value of x. Remember that the discriminant formula is derived from completing the square method.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Which scientist proved that even plants have feelings class 10 physics CBSE

Write any two uses of Plaster of Paris class 10 chemistry CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Five things I will do to build a great India class 10 english CBSE

