
How do you solve the system of equations $x+2y=3$ and $2x+4y=6$?
Answer
541.2k+ views
Hint: We find the general equations and their coefficients to find ratios. We define the relations between those ratios to find the number of solutions possible. Then we put the values from $x+2y=3$ and $2x+4y=6$ to find a number of solutions.
Complete step-by-step solution:
The coefficients of the given equation define the number of solutions for the given equations.
Let’s take two equations and two unknowns. $ax+by=m$ and $cx+dy=n$
In the equations the terms a, b, c, d, m, n all are constants.
We take the ratios of the coefficients of the same variables. The ratios are $\dfrac{a}{c},\dfrac{b}{d},\dfrac{m}{n}$.
The relation among these ratios determines the equations.
If $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{m}{n}$, then we have an infinite number of solutions for those equations.
If $\dfrac{a}{c}=\dfrac{b}{d}\ne \dfrac{m}{n}$, then we have no solution for those equations.
If $\dfrac{a}{c}\ne \dfrac{b}{d}$, then we have only one solution for those equations.
In case of $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{m}{n}$, both equations become a single equation. For a particular value of x, we can determine the value of y.
In case of $\dfrac{a}{c}=\dfrac{b}{d}\ne \dfrac{m}{n}$, for particular values of x and y, we have different values of same function $ax+by=cx+dy$.
Now, for $x+2y=3$ and $2x+4y=6$. We take the coefficients and place them in the formula. The ratios are $\dfrac{1}{2},\dfrac{2}{4},\dfrac{3}{6}$.
The relation is $\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{3}{6}=\dfrac{1}{2}$. So, we have an infinite number of solutions for those equations.
Note: The solution of $x+2y=3$ and $2x+4y=6$. Both the equations are the same. We take any of the equations and then proceed with an assumed value of $x$. Let $x=-1$. We put that value in the equation of $x+2y=3$.
$\begin{align}
& x+2y=3 \\
& \Rightarrow -1+2y=3 \\
& \Rightarrow 2y=3+1=4 \\
& \Rightarrow y=\dfrac{4}{2}=2 \\
\end{align}$
One of those solutions is $x=-1,y=2$.
Complete step-by-step solution:
The coefficients of the given equation define the number of solutions for the given equations.
Let’s take two equations and two unknowns. $ax+by=m$ and $cx+dy=n$
In the equations the terms a, b, c, d, m, n all are constants.
We take the ratios of the coefficients of the same variables. The ratios are $\dfrac{a}{c},\dfrac{b}{d},\dfrac{m}{n}$.
The relation among these ratios determines the equations.
If $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{m}{n}$, then we have an infinite number of solutions for those equations.
If $\dfrac{a}{c}=\dfrac{b}{d}\ne \dfrac{m}{n}$, then we have no solution for those equations.
If $\dfrac{a}{c}\ne \dfrac{b}{d}$, then we have only one solution for those equations.
In case of $\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{m}{n}$, both equations become a single equation. For a particular value of x, we can determine the value of y.
In case of $\dfrac{a}{c}=\dfrac{b}{d}\ne \dfrac{m}{n}$, for particular values of x and y, we have different values of same function $ax+by=cx+dy$.
Now, for $x+2y=3$ and $2x+4y=6$. We take the coefficients and place them in the formula. The ratios are $\dfrac{1}{2},\dfrac{2}{4},\dfrac{3}{6}$.
The relation is $\dfrac{1}{2}=\dfrac{2}{4}=\dfrac{3}{6}=\dfrac{1}{2}$. So, we have an infinite number of solutions for those equations.
Note: The solution of $x+2y=3$ and $2x+4y=6$. Both the equations are the same. We take any of the equations and then proceed with an assumed value of $x$. Let $x=-1$. We put that value in the equation of $x+2y=3$.
$\begin{align}
& x+2y=3 \\
& \Rightarrow -1+2y=3 \\
& \Rightarrow 2y=3+1=4 \\
& \Rightarrow y=\dfrac{4}{2}=2 \\
\end{align}$
One of those solutions is $x=-1,y=2$.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

