Answer
Verified
483.6k+ views
Hint:- Compare the given equation with standard quadratic equation and use the quadratic formula to solve the equation.
Given, $2{{\text{x}}^2} - 7 = 0$. We need to find the value of x which satisfies the given equation.
A general form of quadratic equation is ${\text{a}}{{\text{x}}^2} + {\text{ bx + c = 0}}$. Comparing the given equation from the general form we can easily conclude that the given equation is a quadratic equation.
A general quadratic equation in one variable can be solved by using the quadratic formula. i.e.
$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$.
Now comparing the coefficients of $2{{\text{x}}^2} - 7 = 0$ with the general form of quadratic equation , we get
a = 2 , b= 0 and c = -7.
Now, applying the quadratic formula for $2{{\text{x}}^2} - 7 = 0$
x =$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$
x = $\dfrac{{ - 0 \pm \sqrt {{0^2} - 4 \times 2 \times \left( { - 7} \right)} }}{{2 \times 2}}$
x = $\dfrac{{ \pm \sqrt {56} }}{4}$
x = $\dfrac{{ \pm 2\sqrt {14} }}{4}$
x = $\dfrac{{ \pm \sqrt {14} }}{2}$
Hence, the value of x that satisfies the given equation is $\dfrac{{ \pm \sqrt {14} }}{2}$.
Note:- In these types of questions, the key concept is to check the degree of the equation. If it is a linear equation then only by simplifying the equation we can find the unknown. But if the equation is quadratic i.e. the degree of equation is 2, then the quadratic formula needs to be applied.
Given, $2{{\text{x}}^2} - 7 = 0$. We need to find the value of x which satisfies the given equation.
A general form of quadratic equation is ${\text{a}}{{\text{x}}^2} + {\text{ bx + c = 0}}$. Comparing the given equation from the general form we can easily conclude that the given equation is a quadratic equation.
A general quadratic equation in one variable can be solved by using the quadratic formula. i.e.
$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$.
Now comparing the coefficients of $2{{\text{x}}^2} - 7 = 0$ with the general form of quadratic equation , we get
a = 2 , b= 0 and c = -7.
Now, applying the quadratic formula for $2{{\text{x}}^2} - 7 = 0$
x =$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$
x = $\dfrac{{ - 0 \pm \sqrt {{0^2} - 4 \times 2 \times \left( { - 7} \right)} }}{{2 \times 2}}$
x = $\dfrac{{ \pm \sqrt {56} }}{4}$
x = $\dfrac{{ \pm 2\sqrt {14} }}{4}$
x = $\dfrac{{ \pm \sqrt {14} }}{2}$
Hence, the value of x that satisfies the given equation is $\dfrac{{ \pm \sqrt {14} }}{2}$.
Note:- In these types of questions, the key concept is to check the degree of the equation. If it is a linear equation then only by simplifying the equation we can find the unknown. But if the equation is quadratic i.e. the degree of equation is 2, then the quadratic formula needs to be applied.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
1 ton equals to A 100 kg B 1000 kg C 10 kg D 10000 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The largest tea producing country in the world is A class 10 social science CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE