
Solve the quadratic equation to find the value of ‘x’ $2{{\text{x}}^2} - 7 = 0$.
Answer
594k+ views
Hint:- Compare the given equation with standard quadratic equation and use the quadratic formula to solve the equation.
Given, $2{{\text{x}}^2} - 7 = 0$. We need to find the value of x which satisfies the given equation.
A general form of quadratic equation is ${\text{a}}{{\text{x}}^2} + {\text{ bx + c = 0}}$. Comparing the given equation from the general form we can easily conclude that the given equation is a quadratic equation.
A general quadratic equation in one variable can be solved by using the quadratic formula. i.e.
$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$.
Now comparing the coefficients of $2{{\text{x}}^2} - 7 = 0$ with the general form of quadratic equation , we get
a = 2 , b= 0 and c = -7.
Now, applying the quadratic formula for $2{{\text{x}}^2} - 7 = 0$
x =$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$
x = $\dfrac{{ - 0 \pm \sqrt {{0^2} - 4 \times 2 \times \left( { - 7} \right)} }}{{2 \times 2}}$
x = $\dfrac{{ \pm \sqrt {56} }}{4}$
x = $\dfrac{{ \pm 2\sqrt {14} }}{4}$
x = $\dfrac{{ \pm \sqrt {14} }}{2}$
Hence, the value of x that satisfies the given equation is $\dfrac{{ \pm \sqrt {14} }}{2}$.
Note:- In these types of questions, the key concept is to check the degree of the equation. If it is a linear equation then only by simplifying the equation we can find the unknown. But if the equation is quadratic i.e. the degree of equation is 2, then the quadratic formula needs to be applied.
Given, $2{{\text{x}}^2} - 7 = 0$. We need to find the value of x which satisfies the given equation.
A general form of quadratic equation is ${\text{a}}{{\text{x}}^2} + {\text{ bx + c = 0}}$. Comparing the given equation from the general form we can easily conclude that the given equation is a quadratic equation.
A general quadratic equation in one variable can be solved by using the quadratic formula. i.e.
$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$.
Now comparing the coefficients of $2{{\text{x}}^2} - 7 = 0$ with the general form of quadratic equation , we get
a = 2 , b= 0 and c = -7.
Now, applying the quadratic formula for $2{{\text{x}}^2} - 7 = 0$
x =$\dfrac{{ - {\text{b}} \pm \sqrt {{{\text{b}}^2} - 4{\text{ac}}} }}{{2{\text{a}}}}$
x = $\dfrac{{ - 0 \pm \sqrt {{0^2} - 4 \times 2 \times \left( { - 7} \right)} }}{{2 \times 2}}$
x = $\dfrac{{ \pm \sqrt {56} }}{4}$
x = $\dfrac{{ \pm 2\sqrt {14} }}{4}$
x = $\dfrac{{ \pm \sqrt {14} }}{2}$
Hence, the value of x that satisfies the given equation is $\dfrac{{ \pm \sqrt {14} }}{2}$.
Note:- In these types of questions, the key concept is to check the degree of the equation. If it is a linear equation then only by simplifying the equation we can find the unknown. But if the equation is quadratic i.e. the degree of equation is 2, then the quadratic formula needs to be applied.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

