Answer
Verified
408.6k+ views
Hint: We are given a equation as ${{x}^{2}}-8x+12=0$ , To find the solution, we will first know about the type of equation once we have the type of equation their we will work on ways to find the solution completing the square method is one in which we make a complete square and then solve further, so we use this to solve our problem.
Complete step by step answer:
We are given an equation as ${{x}^{2}}-8x+12=0$ .
We can see that this equation has the highest power as 2, so it is clearly a two degree polynomial, a quadratic polynomial we have to find the solution of it, it means we have to find those in which we will satisfy the given equation.
As the power is 2 so maximum it can have 2 solutions.
We have to use completing the square method to find the solution.
The steps to find the solution using completing the square method is –
Step 1: Divide all term by coefficient of ${{x}^{2}}$ as in our equation ${{x}^{2}}-8x+12=0$
Coefficient of ${{x}^{2}}$ is ‘1’, so if we divide all terms, we get an equation same as the original.
${{x}^{2}}-8x+12=0$
Step 2: Move the number (constant) to the side in our equation we have constant as $+12$ so we subtract 12 on both sides, we get –
${{x}^{2}}-8x+12-12=0-12$
So, ${{x}^{2}}-8x=-12$
Step 3: Complete the square on the left side of the equation and balance this by adding the same value on the right.
In our equation ${{x}^{2}}-2\times 4\times x=-12$
We add ${{4}^{2}}$ to complete the square, we add it to both sides to keep the equation balanced.
So, ${{x}^{2}}-2\times 4x+{{4}^{2}}=12+{{4}^{2}}$
As ${{4}^{4}}=16$ so, we get at the simplifying
${{\left( x-4 \right)}^{2}}=4$
Taking square root we get –
$\left( x-4 \right)=\pm \sqrt{4}$
As $\sqrt{4}=2$
So,
$x-4=\pm 2$
Adding ‘4’ both side we get –
$x=\pm 2+4$
So, solutions are –
$x=+2+4$ and $x=-2+4$
So, $x=6$ and $x=2$
Note: We can also find a solution to this by plotting ${{x}^{2}}-8x+12=0$ on the graph. The point where there graph cut the x-axis will be defining our solution at here right side is zero so here solution is also refer to as zero if the given polynomial so that is why when we find the solution it will lie on the a-axis only as they are zero of the equation and zero always lie on x-axis.
Complete step by step answer:
We are given an equation as ${{x}^{2}}-8x+12=0$ .
We can see that this equation has the highest power as 2, so it is clearly a two degree polynomial, a quadratic polynomial we have to find the solution of it, it means we have to find those in which we will satisfy the given equation.
As the power is 2 so maximum it can have 2 solutions.
We have to use completing the square method to find the solution.
The steps to find the solution using completing the square method is –
Step 1: Divide all term by coefficient of ${{x}^{2}}$ as in our equation ${{x}^{2}}-8x+12=0$
Coefficient of ${{x}^{2}}$ is ‘1’, so if we divide all terms, we get an equation same as the original.
${{x}^{2}}-8x+12=0$
Step 2: Move the number (constant) to the side in our equation we have constant as $+12$ so we subtract 12 on both sides, we get –
${{x}^{2}}-8x+12-12=0-12$
So, ${{x}^{2}}-8x=-12$
Step 3: Complete the square on the left side of the equation and balance this by adding the same value on the right.
In our equation ${{x}^{2}}-2\times 4\times x=-12$
We add ${{4}^{2}}$ to complete the square, we add it to both sides to keep the equation balanced.
So, ${{x}^{2}}-2\times 4x+{{4}^{2}}=12+{{4}^{2}}$
As ${{4}^{4}}=16$ so, we get at the simplifying
${{\left( x-4 \right)}^{2}}=4$
Taking square root we get –
$\left( x-4 \right)=\pm \sqrt{4}$
As $\sqrt{4}=2$
So,
$x-4=\pm 2$
Adding ‘4’ both side we get –
$x=\pm 2+4$
So, solutions are –
$x=+2+4$ and $x=-2+4$
So, $x=6$ and $x=2$
Note: We can also find a solution to this by plotting ${{x}^{2}}-8x+12=0$ on the graph. The point where there graph cut the x-axis will be defining our solution at here right side is zero so here solution is also refer to as zero if the given polynomial so that is why when we find the solution it will lie on the a-axis only as they are zero of the equation and zero always lie on x-axis.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths