
Solve the quadratic equation \[2{{x}^{2}}+x-4=0\] by completing the square.
Answer
607.8k+ views
Hint: First of all divide the whole equation by 2, to make the coefficients of \[{{x}^{2}}=1\]. Now to complete the square, try to convert \[{{x}^{2}}+\dfrac{x}{2}\] in the form of \[{{a}^{2}}+{{b}^{2}}+2ab\] by adding a suitable constant to it and then solve for x.
Complete step by step solution:
Here, we have to solve the quadratic equation \[2{{x}^{2}}+x-4=0\] by completing the square.
Let us consider the quadratic equation given in the question.
\[2{{x}^{2}}+x-4=0\]
First of all, let us divide the whole equation by 2, to get the coefficients of \[{{x}^{2}}=1\]. We get,
\[\dfrac{2{{x}^{2}}}{2}+\dfrac{x}{2}-\dfrac{4}{2}=0\]
Or, \[{{x}^{2}}+\dfrac{x}{2}-2=0\]
We can also write the above equation as,
\[{{x}^{2}}+2\left( \dfrac{1}{4} \right)\left( x \right)-2=0\]
By adding \[\dfrac{1}{16}\] to both sides of the above equation, we get,
\[{{x}^{2}}+2\left( \dfrac{1}{4} \right)x+\dfrac{1}{16}-2=\dfrac{1}{16}\]
We can also write \[\dfrac{1}{16}={{\left( \dfrac{1}{4} \right)}^{2}}\] in LHS of the above equation, so we get,
\[\Rightarrow {{x}^{2}}+2\left( \dfrac{1}{4} \right)x+{{\left( \dfrac{1}{4} \right)}^{2}}-2=\dfrac{1}{16}\]
By adding 2 on both sides of the above equation, we get,
\[\Rightarrow {{x}^{2}}+2\left( \dfrac{1}{4} \right)x+{{\left( \dfrac{1}{4} \right)}^{2}}=2+\dfrac{1}{16}\]
Now, we know that \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}\].
So by using this in the above equation and considering a = x and \[b=\dfrac{1}{4}\]. We get,
\[\Rightarrow {{\left( x+\dfrac{1}{4} \right)}^{2}}=\dfrac{33}{16}\]
By taking square root on both sides of the above equation, we get,
\[\sqrt{{{\left( x+\dfrac{1}{4} \right)}^{2}}}=\pm \sqrt{\dfrac{33}{16}}\]
We know that \[\sqrt{{{a}^{2}}}=a\]. So, we get,
\[\left( x+\dfrac{1}{4} \right)=\pm \sqrt{\dfrac{33}{16}}\]
By subtracting \[\dfrac{1}{4}\] from both sides of the above equation, we get,
\[x=\pm \sqrt{\dfrac{33}{16}}-\dfrac{1}{4}\]
We know that \[\sqrt{16}=4\]. So by substituting the value of \[\sqrt{16}\] in the above equation, we get,
\[x=\pm \dfrac{\sqrt{33}}{4}-\dfrac{1}{4}\]
So, we get \[x=\dfrac{\sqrt{33}-1}{4}\] and \[x=\dfrac{-\sqrt{33}-1}{4}\]
Hence, we have solved the quadratic equation \[2{{x}^{2}}+x-4\] by completing the square.
Note: Here many students solve the equation by using the quadratic formula that is \[x=\dfrac{-b\pm\sqrt{{{b}^{2}}-4ac}}{2a}\] but they must keep in mind that they have to solve the question by completing the square. Though they can cross-check the values of x by using the above formula. Also, it is advisable to convert the coefficient of \[{{x}^{2}}=1\] to easily solve the equation by this method.
Complete step by step solution:
Here, we have to solve the quadratic equation \[2{{x}^{2}}+x-4=0\] by completing the square.
Let us consider the quadratic equation given in the question.
\[2{{x}^{2}}+x-4=0\]
First of all, let us divide the whole equation by 2, to get the coefficients of \[{{x}^{2}}=1\]. We get,
\[\dfrac{2{{x}^{2}}}{2}+\dfrac{x}{2}-\dfrac{4}{2}=0\]
Or, \[{{x}^{2}}+\dfrac{x}{2}-2=0\]
We can also write the above equation as,
\[{{x}^{2}}+2\left( \dfrac{1}{4} \right)\left( x \right)-2=0\]
By adding \[\dfrac{1}{16}\] to both sides of the above equation, we get,
\[{{x}^{2}}+2\left( \dfrac{1}{4} \right)x+\dfrac{1}{16}-2=\dfrac{1}{16}\]
We can also write \[\dfrac{1}{16}={{\left( \dfrac{1}{4} \right)}^{2}}\] in LHS of the above equation, so we get,
\[\Rightarrow {{x}^{2}}+2\left( \dfrac{1}{4} \right)x+{{\left( \dfrac{1}{4} \right)}^{2}}-2=\dfrac{1}{16}\]
By adding 2 on both sides of the above equation, we get,
\[\Rightarrow {{x}^{2}}+2\left( \dfrac{1}{4} \right)x+{{\left( \dfrac{1}{4} \right)}^{2}}=2+\dfrac{1}{16}\]
Now, we know that \[\left( {{a}^{2}}+2ab+{{b}^{2}} \right)={{\left( a+b \right)}^{2}}\].
So by using this in the above equation and considering a = x and \[b=\dfrac{1}{4}\]. We get,
\[\Rightarrow {{\left( x+\dfrac{1}{4} \right)}^{2}}=\dfrac{33}{16}\]
By taking square root on both sides of the above equation, we get,
\[\sqrt{{{\left( x+\dfrac{1}{4} \right)}^{2}}}=\pm \sqrt{\dfrac{33}{16}}\]
We know that \[\sqrt{{{a}^{2}}}=a\]. So, we get,
\[\left( x+\dfrac{1}{4} \right)=\pm \sqrt{\dfrac{33}{16}}\]
By subtracting \[\dfrac{1}{4}\] from both sides of the above equation, we get,
\[x=\pm \sqrt{\dfrac{33}{16}}-\dfrac{1}{4}\]
We know that \[\sqrt{16}=4\]. So by substituting the value of \[\sqrt{16}\] in the above equation, we get,
\[x=\pm \dfrac{\sqrt{33}}{4}-\dfrac{1}{4}\]
So, we get \[x=\dfrac{\sqrt{33}-1}{4}\] and \[x=\dfrac{-\sqrt{33}-1}{4}\]
Hence, we have solved the quadratic equation \[2{{x}^{2}}+x-4\] by completing the square.
Note: Here many students solve the equation by using the quadratic formula that is \[x=\dfrac{-b\pm\sqrt{{{b}^{2}}-4ac}}{2a}\] but they must keep in mind that they have to solve the question by completing the square. Though they can cross-check the values of x by using the above formula. Also, it is advisable to convert the coefficient of \[{{x}^{2}}=1\] to easily solve the equation by this method.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Differentiate between Food chain and Food web class 10 biology CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

On the outline map of India mark the following appropriately class 10 social science. CBSE

Why does India have a monsoon type of climate class 10 social science CBSE

A sum of 10000 is invested at the rate of 8 per year class 10 maths CBSE

