Answer
Verified
419.7k+ views
Hint: A linear equation is any equation that can be written in the form $ax + by + c = 0$ where a and b are real numbers and x and y are variables. This form is sometimes called the standard form of a linear equation with two variables. If the equation contains any fractions use the least common denominator to clear the fraction. We will do this by multiplying both sides of the equation by LCD.
Firstly we add the both equations then we get another linear equation in two variables. Secondly, we subtract the both given equations, we get another linear equation in two variables. Further both equations are solved by simple methods.
Complete step-by-step answer:
We have given two equation
\[ \Rightarrow \]\[152x - 378y{\text{ }} = {\text{ }} - 74\;.{\text{ }}.....{\text{ }}\left( 1 \right)\]
\[ \Rightarrow \]\[ - 378x + 152y{\text{ }} = {\text{ }} - 604\;......{\text{ }}\left( 2 \right)\]
In given equation, the coefficient of variable x and y in
Equation is the coefficient of y and x in 2 equations respectively.
Adding Equation 1 and 2, we get,
\[x = {\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{ - - - - - - - - - - - - - - - - - - } \\
{ - 226x{\text{ }} - 226y{\text{ }} = {\text{ }} - {\text{ }}678}
\end{array}\]
\[ \Rightarrow \]\[ - 226\left( {x + y{\text{ }}} \right){\text{ }} = {\text{ }} - 678\]
\[ \Rightarrow \]\[x + y{\text{ }} = {\text{ }} - 678/ - 226 = {\text{ }}3\]
\[ \Rightarrow \] \[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 3 \right)\]
After solving, we get the linear equation marked as 3 equation,
\[Subtracting{\text{ }}equation{\text{ }}1{\text{ }}and{\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{\left( + \right)\;\;\;\;\;\left( - \right)\;\;\;\;\;\;\;\;\;\left( + \right)} \\
{ - - - - - - - - - - - - - - - } \\
{530x{\text{ }} - {\text{ }}530y{\text{ }} = {\text{ }}530}
\end{array}\]
\[ \Rightarrow \] \[530{\text{ }}\left( {x - {\text{ }}y{\text{ }}} \right){\text{ }} = {\text{ }}530\]
\[ \Rightarrow \] \[x - y{\text{ }} = {\text{ }}\dfrac{{530}}{{530}} = {\text{ }}1\]
\[ \Rightarrow \] \[x{\text{ }} - \;y{\text{ }} = {\text{ }}1 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 4 \right)\]
Here, we use the elimination method.
On adding equation 3 and 4, we get,
\[\begin{array}{*{20}{l}}
{x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3} \\
{x{\text{ }} - \;y{\text{ }} = {\text{ }}1\;\;\;\;\;\;\;\;\;\;} \\
{ - - - - - - } \\
{2x{\text{ }} = {\text{ }}4}
\end{array}\]
\[ \Rightarrow \]\[x{\text{ }} = {\text{ }}\dfrac{4}{2}\]=\[x{\text{ }} = {\text{ }}2\]
On substituting \[x{\text{ }} = {\text{ }}2\] in equation 3
\[ \Rightarrow \]\[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \]\[2{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}3 - 2} $
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}1} $
Hence, \[x = {\text{ }}2\] and \[y = {\text{ }}1\] is the required solution.
Note: To remember the process of framing simultaneous linear equations from mathematical problems. To remember how to solve simultaneous equations by the method of comparison and method of cross multiplications. There is yet another visual way of representing quantitative data and its frequencies. This is a polygon.
Firstly we add the both equations then we get another linear equation in two variables. Secondly, we subtract the both given equations, we get another linear equation in two variables. Further both equations are solved by simple methods.
Complete step-by-step answer:
We have given two equation
\[ \Rightarrow \]\[152x - 378y{\text{ }} = {\text{ }} - 74\;.{\text{ }}.....{\text{ }}\left( 1 \right)\]
\[ \Rightarrow \]\[ - 378x + 152y{\text{ }} = {\text{ }} - 604\;......{\text{ }}\left( 2 \right)\]
In given equation, the coefficient of variable x and y in
Equation is the coefficient of y and x in 2 equations respectively.
Adding Equation 1 and 2, we get,
\[x = {\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{ - - - - - - - - - - - - - - - - - - } \\
{ - 226x{\text{ }} - 226y{\text{ }} = {\text{ }} - {\text{ }}678}
\end{array}\]
\[ \Rightarrow \]\[ - 226\left( {x + y{\text{ }}} \right){\text{ }} = {\text{ }} - 678\]
\[ \Rightarrow \]\[x + y{\text{ }} = {\text{ }} - 678/ - 226 = {\text{ }}3\]
\[ \Rightarrow \] \[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 3 \right)\]
After solving, we get the linear equation marked as 3 equation,
\[Subtracting{\text{ }}equation{\text{ }}1{\text{ }}and{\text{ }}2\]
\[\begin{array}{*{20}{l}}
{152x{\text{ }} - \;378y{\text{ }} = {\text{ }}-{\text{ }}74} \\
{ - 378x\; + 152y{\text{ }} = {\text{ }}-{\text{ }}604} \\
{\left( + \right)\;\;\;\;\;\left( - \right)\;\;\;\;\;\;\;\;\;\left( + \right)} \\
{ - - - - - - - - - - - - - - - } \\
{530x{\text{ }} - {\text{ }}530y{\text{ }} = {\text{ }}530}
\end{array}\]
\[ \Rightarrow \] \[530{\text{ }}\left( {x - {\text{ }}y{\text{ }}} \right){\text{ }} = {\text{ }}530\]
\[ \Rightarrow \] \[x - y{\text{ }} = {\text{ }}\dfrac{{530}}{{530}} = {\text{ }}1\]
\[ \Rightarrow \] \[x{\text{ }} - \;y{\text{ }} = {\text{ }}1 \ldots \ldots \ldots \ldots \ldots \ldots .\left( 4 \right)\]
Here, we use the elimination method.
On adding equation 3 and 4, we get,
\[\begin{array}{*{20}{l}}
{x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3} \\
{x{\text{ }} - \;y{\text{ }} = {\text{ }}1\;\;\;\;\;\;\;\;\;\;} \\
{ - - - - - - } \\
{2x{\text{ }} = {\text{ }}4}
\end{array}\]
\[ \Rightarrow \]\[x{\text{ }} = {\text{ }}\dfrac{4}{2}\]=\[x{\text{ }} = {\text{ }}2\]
On substituting \[x{\text{ }} = {\text{ }}2\] in equation 3
\[ \Rightarrow \]\[x{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \]\[2{\text{ }} + {\text{ }}y{\text{ }} = {\text{ }}3\]
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}3 - 2} $
\[ \Rightarrow \] ${y{\text{ }} = {\text{ }}1} $
Hence, \[x = {\text{ }}2\] and \[y = {\text{ }}1\] is the required solution.
Note: To remember the process of framing simultaneous linear equations from mathematical problems. To remember how to solve simultaneous equations by the method of comparison and method of cross multiplications. There is yet another visual way of representing quantitative data and its frequencies. This is a polygon.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE