Courses
Courses for Kids
Free study material
Free LIVE classes
More
Questions & Answers

Solve the pair of linear equation $2x + 3y = 11$ and $2x - 4y = - 24$

Last updated date: 25th Mar 2023
Total views: 307.8k
Views today: 5.85k
Answer
VerifiedVerified
307.8k+ views
Hint: Start by solving the equation by applying arithmetic operations, when one of the values of the variable are known, put this value in any of the given equations and find the value of the second variable.

Complete step-by-step answer:
$2x + 3y = 11$…..\[(1)\]
$2x - 4y = - 24$…..$(2)$
On subtracting $(2)$ from \[(1)\], we get,
$\left( {2x + 3y} \right) - \left( {2x - 4y} \right) = 11 - \left( { - 24} \right)$
$2x + 3y - 2x + 4y = 11 + 24$
$7y = 35$
$y = 5$
Substituting the value of $y$in\[(1)\], we get,
$2x + 3\left( 5 \right) = 11$
$2x = 11 - 15$
$2x = - 4$
$x = \dfrac{{ - 4}}{2} = - 2$
Hence the value of $x = - 2$and the value of $y = 5$

Note: Make sure to apply the correct arithmetic operation while solving the equation so that it is easier to find the value of the variables.