
Solve the given equation $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$, $\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$
Answer
604.8k+ views
Hint – Using the given equations in the question we transform one equation such that the variable x is in terms of y. Then substitute y in the other equation. Then solve for the value of y and substitute for x.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

