Solve the given equation $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$, $\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$
Last updated date: 17th Mar 2023
•
Total views: 303k
•
Views today: 8.86k
Answer
303k+ views
Hint – Using the given equations in the question we transform one equation such that the variable x is in terms of y. Then substitute y in the other equation. Then solve for the value of y and substitute for x.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Complete step-by-step answer:
Given: $\dfrac{{{\text{3x}}}}{2} - \dfrac{{{\text{5y}}}}{3} = - 2$ --- (1)
$\dfrac{{\text{x}}}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6}$ ---- (2)
Rewriting (1),
$
\dfrac{{{\text{3x}}}}{2} = - 2 + \dfrac{{{\text{5y}}}}{3} \\
\Rightarrow \dfrac{{{\text{3x}}}}{2} = - \dfrac{{{\text{ - 6 + 5y}}}}{3} \\
\Rightarrow {\text{3x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{3} \\
\Rightarrow {\text{x}} = - \dfrac{{{\text{ - 12 + 10y}}}}{{\text{9}}}{\text{ - - - - - - - - }}\left( 3 \right) \\
$
Substituting (3) in (2)
$
\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9} \times \dfrac{1}{3} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{{27}} + \dfrac{{\text{y}}}{2} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 20{\text{y + 27y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{{54}} = \dfrac{{13}}{6} \\
\Rightarrow \dfrac{{\left( { - 24 + 47{\text{y}}} \right)}}{9} = 13 \\
\Rightarrow \left( { - 24 + 47{\text{y}}} \right) = 9 \times 13 = 117 \\
\Rightarrow 47{\text{y = 117 + 24}} \\
\Rightarrow {\text{47y = 141}} \\
\Rightarrow {\text{y = 3}} \\
$
Substitute value of y in (3) to find value of x
x = $\dfrac{{\left( { - 12 + 10{\text{y}}} \right)}}{9}$
$
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 10 \times 3} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{\left( { - 12 + 30} \right)}}{9} \\
\Rightarrow {\text{x = }}\dfrac{{18}}{9} \\
\Rightarrow {\text{x = 2}} \\
$
Hence, (x, y) = (2, 3)
Note – This is a question which is of the type in which there are 2 equations and 2 variables. The key is to transform one of the equations such that we have one variable in terms of another. Then the other equation reduces into a single variable equation and becomes easier to solve. On finding the value of one variable the other can be found simply by substituting.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
