
Solve the following trigonometric equation:
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0$.
Answer
603.3k+ views
Hint: By the use of trigonometric formulae we need to find the value of $'\theta '$ satisfying the given equation.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

