Answer
Verified
492.9k+ views
Hint: By the use of trigonometric formulae we need to find the value of $'\theta '$ satisfying the given equation.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Given,
$3{\cos ^2}\theta - 2\sqrt 3 \cos \theta \sin \theta - 3{\sin ^2}\theta = 0 \to (1)$
Now, we can rewrite the equation (1) as
$
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) - \sqrt 3 (2\cos \theta \sin \theta ) = 0 \\
\Rightarrow 3({\cos ^2}\theta - {\sin ^2}\theta ) = \sqrt 3 (2\cos \theta \sin \theta ) \to (2) \\
$
We know that $\cos 2\theta = {\cos ^2}\theta - {\sin ^2}\theta $ and $\sin 2\theta = 2\sin \theta \cos \theta $. Substituting in equation (2), we get
$
\Rightarrow 3\cos 2\theta = \sqrt 3 \sin 2\theta \\
\Rightarrow \dfrac{3}{{\sqrt 3 }} = \dfrac{{\sin 2\theta }}{{\cos 2\theta }} \\
\Rightarrow \tan 2\theta = \sqrt 3 \\
$
Now, let us write the value of $\sqrt 3 $ in terms of $\tan $ i.e.., $\tan (\dfrac{\pi }{3}) = \sqrt 3 $, Substituting in the above equation, we get
$
\Rightarrow \tan 2\theta = \tan (\dfrac{\pi }{3}) \\
\Rightarrow 2\theta = n\pi + \dfrac{\pi }{3} \\
\Rightarrow \theta = \dfrac{{n\pi }}{2} + \dfrac{\pi }{6} \\
$
Hence, the value of $'\theta '$ satisfying the given equation is $\dfrac{{n\pi }}{2} + \dfrac{\pi }{6}$, where n is an integer.
Note: Here, we have added $'n\pi '$ to the $\dfrac{\pi }{3}$ after cancelling the tan on the both sides as $'\pi '$ is the period of the tan function and n is an integral number.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE