
Solve the following systems of equations:
x + y = 2xy
\[\dfrac{{{\text{x - y}}}}{{{\text{xy}}}}{\text{ = 6}}\]
\[{\text{x}} \ne {\text{0,y}} \ne {\text{0}}\]
Answer
602.4k+ views
Hint: In order to solve this problem subtract the equations given then solve algebraically to get the values of x and y. Doing this will give you the right answer.
Complete step-by-step answer:
The given equations are:-
x + y = 2xy (1)
\[\dfrac{{{\text{x - y}}}}{{{\text{xy}}}}{\text{ = 6}}\] (2)
\[{\text{x}} \ne {\text{0,y}} \ne {\text{0}}\]
Equation number (2) can be written as:
x – y = 6xy (3)
Adding equation number (1) and (3) we get,
x + y + x - y = 8xy
2x=8xy
On cancelling x from both sides of the equation we get the new equation as:
8y=2
y = $\dfrac{1}{4}$
On putting the value of y in equation (1) we get the new equation as:
x + $\dfrac{1}{4}$= 2x$\left( {\dfrac{1}{4}} \right)$=$\dfrac{{\text{x}}}{2}$
On solving it further we get the equation as:
$\dfrac{{\text{x}}}{{\text{2}}}{\text{ = - }}\dfrac{{\text{1}}}{{\text{4}}}$
Then x = $ - \dfrac{1}{2}$
So, the value of x = $ - \dfrac{1}{2}$ and the value of y = $\dfrac{1}{4}$.
Note: Whenever you face such types of problems you have to simplify the equations and if the number of unknown is equal to the number of equations then you can get the value of performing mathematical operations between two equations. Proceeding like this you will get the right answer.
Complete step-by-step answer:
The given equations are:-
x + y = 2xy (1)
\[\dfrac{{{\text{x - y}}}}{{{\text{xy}}}}{\text{ = 6}}\] (2)
\[{\text{x}} \ne {\text{0,y}} \ne {\text{0}}\]
Equation number (2) can be written as:
x – y = 6xy (3)
Adding equation number (1) and (3) we get,
x + y + x - y = 8xy
2x=8xy
On cancelling x from both sides of the equation we get the new equation as:
8y=2
y = $\dfrac{1}{4}$
On putting the value of y in equation (1) we get the new equation as:
x + $\dfrac{1}{4}$= 2x$\left( {\dfrac{1}{4}} \right)$=$\dfrac{{\text{x}}}{2}$
On solving it further we get the equation as:
$\dfrac{{\text{x}}}{{\text{2}}}{\text{ = - }}\dfrac{{\text{1}}}{{\text{4}}}$
Then x = $ - \dfrac{1}{2}$
So, the value of x = $ - \dfrac{1}{2}$ and the value of y = $\dfrac{1}{4}$.
Note: Whenever you face such types of problems you have to simplify the equations and if the number of unknown is equal to the number of equations then you can get the value of performing mathematical operations between two equations. Proceeding like this you will get the right answer.
Recently Updated Pages
Which is the Longest Railway Platform in the world?

India Manned Space Mission Launch Target Month and Year 2025 Update

Which of the following pairs is correct?

The Turko-Afghan rule in India lasted for about?

In which state Jews are not considered minors?

What is Ornithophobia?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

