
Solve the following simultaneous equations by the method of equating coefficients.
$\dfrac{x}{2} + 3y = 11;x + 5y = 20$
A. $x = 20,y = 2$
B. $x = 15,y = 2$
C. $x = 5,y = 2$
D. $x = 10,y = 2$
Answer
605.7k+ views
Hint: To solve the given equations, we should focus on the coefficients of x and y and try to make one of the coefficients equal so that it gets cancelled in the later steps, find one of the values of x or y and then equate this value to one of the equation and find the value of the second variable that is x or y.
Complete step-by-step answer:
Given,
$\dfrac{x}{2} + 3y = 11$
Multiply 2 in the entire equation, so as to make the simplification easier,
$ \Rightarrow x + 6y = 22$ …..(i)
and,
$x + 5y = 20$ …..(ii)
Since, coefficients of x in both equations are equal.
On subtracting (ii) from (i), we get,
$ \Rightarrow x + 6y - \left( {x + 5y} \right) = 22 - 20$
$ \Rightarrow x + 6y - x - 5y = 2$
$ \Rightarrow y = 2$
Substitute the value of $y = 2$ in equation (i),
$x + 6\left( 2 \right) = 22$
$ \Rightarrow x = 10$
Therefore, $x = 10,y = 2$.
Note: The first step is to make x or y equal in both the equations, so we can cancel out one of the terms and calculate the second variable, putting this value in one of the equations we can obtain the value of the second variable as well.
Complete step-by-step answer:
Given,
$\dfrac{x}{2} + 3y = 11$
Multiply 2 in the entire equation, so as to make the simplification easier,
$ \Rightarrow x + 6y = 22$ …..(i)
and,
$x + 5y = 20$ …..(ii)
Since, coefficients of x in both equations are equal.
On subtracting (ii) from (i), we get,
$ \Rightarrow x + 6y - \left( {x + 5y} \right) = 22 - 20$
$ \Rightarrow x + 6y - x - 5y = 2$
$ \Rightarrow y = 2$
Substitute the value of $y = 2$ in equation (i),
$x + 6\left( 2 \right) = 22$
$ \Rightarrow x = 10$
Therefore, $x = 10,y = 2$.
Note: The first step is to make x or y equal in both the equations, so we can cancel out one of the terms and calculate the second variable, putting this value in one of the equations we can obtain the value of the second variable as well.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

