Answer
Verified
495k+ views
Hint: Use the basic rule of factorization of quadratic equation i.e. split the middle terms when multiplied which gives the same as multiplication of first and last term.
We have the quadratic equation as \[7x+\dfrac{3}{x}=35\dfrac{3}{5}\]
\[\dfrac{7{{x}^{2}}+3}{x}=\dfrac{35\times 5+3}{5}\]
\[\left( 7{{x}^{2}}+3 \right)5=x\left( 175+3 \right)\]
\[35{{x}^{2}}+15=178x\]
\[35{{x}^{2}}-178x+15=0\]
Now, as we know any quadratic equation is factored by splitting the coefficient of \[x\] in addition of two numbers such that if we multiply them, that should be equal to the multiplication of coefficient of \[{{x}^{2}}\] and constant term.
Hence, let us assume we have quadratic equation as \[A{{x}^{2}}+Bx+C=0\]
Now, let \[B\] be expressed as \[\left( \alpha +\beta \right)\] summation then, \[\alpha \beta \] should be equal to \[AC\];
So, that we have
\[{{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0\]
\[{{x}^{2}}+\alpha x+\beta x+\alpha \beta =0\]
\[x\left( x+\alpha \right)+\beta \left( x+\alpha \right)=0\]
\[\left( x+\alpha \right)\left( x+\beta \right)=0\]
\[x=-\alpha ,-\beta \]
In the same way, let us try to factorize the given quadratic equation –
\[35{{x}^{2}}-178x+15=0\]
Comparing with equation \[A{{x}^{2}}+Bx+C\]
\[AC=35\times 15=525\]
Now \[B\] is equal to \[\left( -178 \right)\].
We need to express it into two terms \[-\alpha \] and \[-\beta \]so that \[\alpha \beta =525\]
Hence, \[-\left( \alpha +\beta \right)=-178\]
\[\alpha +\beta =178\]
\[178=177+1\Rightarrow 177\times 1=177\]
\[178=176+2\Rightarrow 176\times 2=352\]
\[178=175+3\Rightarrow 175\times 3=525\]
Hence we can break \[-178\]as \[-175\] and \[-3\] so that addition of them is \[-178\] and multiplication will be \[525\].
Therefore, we can write the given quadratic equation as
\[35{{x}^{2}}-178x+15=0\]
\[35{{x}^{2}}-175x-3x+15=0\]
\[35x\left( x-5 \right)-3\left( x-5 \right)=0\]
\[\left( 35x-3 \right)\left( x-5 \right)=0\]
\[x=5,\dfrac{3}{35}\]
Hence, the roots of the equation \[\left( 5,\dfrac{3}{35} \right)\].
Note: As we know the form of quadratic equation is \[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\] or \[{{x}^{2}}-\left( \text{Sum of roots} \right)x+\text{ Multiplication roots }=0\]. Factorization method uses the same concept. For the verification of splitting we can check the brackets formed step 3 of factorization as \[35x\left( x-5 \right)-3\left( x-5 \right);\] If the two brackets formed after taking common parts from first two terms and last two terms; these should be equal. If the two brackets formed are not equal, then splitting has gone wrong and we need to check the splitting step once again. Students make mistakes during taking common between the first two and last two terms. We need to take the common HCF of the first two and last two terms respectively, then we will get two brackets formed which is equal.
We have the quadratic equation as \[7x+\dfrac{3}{x}=35\dfrac{3}{5}\]
\[\dfrac{7{{x}^{2}}+3}{x}=\dfrac{35\times 5+3}{5}\]
\[\left( 7{{x}^{2}}+3 \right)5=x\left( 175+3 \right)\]
\[35{{x}^{2}}+15=178x\]
\[35{{x}^{2}}-178x+15=0\]
Now, as we know any quadratic equation is factored by splitting the coefficient of \[x\] in addition of two numbers such that if we multiply them, that should be equal to the multiplication of coefficient of \[{{x}^{2}}\] and constant term.
Hence, let us assume we have quadratic equation as \[A{{x}^{2}}+Bx+C=0\]
Now, let \[B\] be expressed as \[\left( \alpha +\beta \right)\] summation then, \[\alpha \beta \] should be equal to \[AC\];
So, that we have
\[{{x}^{2}}+\left( \alpha +\beta \right)x+\alpha \beta =0\]
\[{{x}^{2}}+\alpha x+\beta x+\alpha \beta =0\]
\[x\left( x+\alpha \right)+\beta \left( x+\alpha \right)=0\]
\[\left( x+\alpha \right)\left( x+\beta \right)=0\]
\[x=-\alpha ,-\beta \]
In the same way, let us try to factorize the given quadratic equation –
\[35{{x}^{2}}-178x+15=0\]
Comparing with equation \[A{{x}^{2}}+Bx+C\]
\[AC=35\times 15=525\]
Now \[B\] is equal to \[\left( -178 \right)\].
We need to express it into two terms \[-\alpha \] and \[-\beta \]so that \[\alpha \beta =525\]
Hence, \[-\left( \alpha +\beta \right)=-178\]
\[\alpha +\beta =178\]
\[178=177+1\Rightarrow 177\times 1=177\]
\[178=176+2\Rightarrow 176\times 2=352\]
\[178=175+3\Rightarrow 175\times 3=525\]
Hence we can break \[-178\]as \[-175\] and \[-3\] so that addition of them is \[-178\] and multiplication will be \[525\].
Therefore, we can write the given quadratic equation as
\[35{{x}^{2}}-178x+15=0\]
\[35{{x}^{2}}-175x-3x+15=0\]
\[35x\left( x-5 \right)-3\left( x-5 \right)=0\]
\[\left( 35x-3 \right)\left( x-5 \right)=0\]
\[x=5,\dfrac{3}{35}\]
Hence, the roots of the equation \[\left( 5,\dfrac{3}{35} \right)\].
Note: As we know the form of quadratic equation is \[{{x}^{2}}-\left( \alpha +\beta \right)x+\alpha \beta =0\] or \[{{x}^{2}}-\left( \text{Sum of roots} \right)x+\text{ Multiplication roots }=0\]. Factorization method uses the same concept. For the verification of splitting we can check the brackets formed step 3 of factorization as \[35x\left( x-5 \right)-3\left( x-5 \right);\] If the two brackets formed after taking common parts from first two terms and last two terms; these should be equal. If the two brackets formed are not equal, then splitting has gone wrong and we need to check the splitting step once again. Students make mistakes during taking common between the first two and last two terms. We need to take the common HCF of the first two and last two terms respectively, then we will get two brackets formed which is equal.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Collect pictures stories poems and information about class 10 social studies CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Why is there a time difference of about 5 hours between class 10 social science CBSE