Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Solve the following quadratic equation by factorization:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4};x \ne 5, - 5$
The roots are $3,\dfrac{{ - 25}}{3}$.
(a) True
(b) False

seo-qna
Last updated date: 24th Jul 2024
Total views: 455.7k
Views today: 8.55k
Answer
VerifiedVerified
455.7k+ views
Hint: Rationalize the identity so that the evaluation becomes simple. Also, the standard identities can be easily used.

We have the given quadratic equation as:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$
By rationalization, we get,
$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)
Now, we know the identities,
${(a + b)^2} = {a^2} + {b^2} + 2ab$
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$({a^2} - {b^2}) = (a - b)(a + b)$
Therefore, by using these identities, we get the equation (1) as
$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
Multiplying both sides by $\dfrac{1}{5}$ , we get,
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$
$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$
$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$
$ \Rightarrow 16x = 75 - 3{x^2}$
$ \Rightarrow 3{x^2} + 16x - 75 = 0$
$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$
$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$
$ \Rightarrow (x - 3)(3x + 25) = 0$
Now, either $(x - 3) = 0$
$\therefore x = 3$
Or $(3x + 25) = 0$
$\therefore x = \dfrac{{ - 25}}{3}$
Hence, the roots are $3,\dfrac{{ - 25}}{3}$.
So, the required solution is (a) True.

Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.