Answer
Verified
495.3k+ views
Hint: Rationalize the identity so that the evaluation becomes simple. Also, the standard identities can be easily used.
We have the given quadratic equation as:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$
By rationalization, we get,
$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)
Now, we know the identities,
${(a + b)^2} = {a^2} + {b^2} + 2ab$
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$({a^2} - {b^2}) = (a - b)(a + b)$
Therefore, by using these identities, we get the equation (1) as
$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
Multiplying both sides by $\dfrac{1}{5}$ , we get,
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$
$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$
$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$
$ \Rightarrow 16x = 75 - 3{x^2}$
$ \Rightarrow 3{x^2} + 16x - 75 = 0$
$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$
$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$
$ \Rightarrow (x - 3)(3x + 25) = 0$
Now, either $(x - 3) = 0$
$\therefore x = 3$
Or $(3x + 25) = 0$
$\therefore x = \dfrac{{ - 25}}{3}$
Hence, the roots are $3,\dfrac{{ - 25}}{3}$.
So, the required solution is (a) True.
Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.
We have the given quadratic equation as:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$
By rationalization, we get,
$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)
Now, we know the identities,
${(a + b)^2} = {a^2} + {b^2} + 2ab$
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$({a^2} - {b^2}) = (a - b)(a + b)$
Therefore, by using these identities, we get the equation (1) as
$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
Multiplying both sides by $\dfrac{1}{5}$ , we get,
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$
$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$
$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$
$ \Rightarrow 16x = 75 - 3{x^2}$
$ \Rightarrow 3{x^2} + 16x - 75 = 0$
$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$
$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$
$ \Rightarrow (x - 3)(3x + 25) = 0$
Now, either $(x - 3) = 0$
$\therefore x = 3$
Or $(3x + 25) = 0$
$\therefore x = \dfrac{{ - 25}}{3}$
Hence, the roots are $3,\dfrac{{ - 25}}{3}$.
So, the required solution is (a) True.
Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE