Answer

Verified

458.4k+ views

Hint: Rationalize the identity so that the evaluation becomes simple. Also, the standard identities can be easily used.

We have the given quadratic equation as:

$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$

By rationalization, we get,

$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)

Now, we know the identities,

${(a + b)^2} = {a^2} + {b^2} + 2ab$

${(a - b)^2} = {a^2} + {b^2} - 2ab$

$({a^2} - {b^2}) = (a - b)(a + b)$

Therefore, by using these identities, we get the equation (1) as

$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$

Multiplying both sides by $\dfrac{1}{5}$ , we get,

$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$

$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$

$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$

$ \Rightarrow 16x = 75 - 3{x^2}$

$ \Rightarrow 3{x^2} + 16x - 75 = 0$

$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$

$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$

$ \Rightarrow (x - 3)(3x + 25) = 0$

Now, either $(x - 3) = 0$

$\therefore x = 3$

Or $(3x + 25) = 0$

$\therefore x = \dfrac{{ - 25}}{3}$

Hence, the roots are $3,\dfrac{{ - 25}}{3}$.

So, the required solution is (a) True.

Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.

We have the given quadratic equation as:

$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$

By rationalization, we get,

$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)

Now, we know the identities,

${(a + b)^2} = {a^2} + {b^2} + 2ab$

${(a - b)^2} = {a^2} + {b^2} - 2ab$

$({a^2} - {b^2}) = (a - b)(a + b)$

Therefore, by using these identities, we get the equation (1) as

$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$

$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$

Multiplying both sides by $\dfrac{1}{5}$ , we get,

$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$

$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$

$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$

$ \Rightarrow 16x = 75 - 3{x^2}$

$ \Rightarrow 3{x^2} + 16x - 75 = 0$

$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$

$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$

$ \Rightarrow (x - 3)(3x + 25) = 0$

Now, either $(x - 3) = 0$

$\therefore x = 3$

Or $(3x + 25) = 0$

$\therefore x = \dfrac{{ - 25}}{3}$

Hence, the roots are $3,\dfrac{{ - 25}}{3}$.

So, the required solution is (a) True.

Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.

Recently Updated Pages

Story writing Rohan was a hardworking boy He wanted class 8 english CBSE

The past tense of Bite is Bited A Yes B No class 8 english CBSE

Report the following dialogues Adichie Who made this class 8 english CBSE

Rewrite the following sentence by inserting the appropriate class 8 english CBSE

Comparison between Nelson Mandela and Mahatma Gandhi class 8 social science CBSE

Identify the meaning of the given phraseidiom Clown class 8 english CBSE

Trending doubts

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which are the Top 10 Largest Countries of the World?

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

10 examples of law on inertia in our daily life