Solve the following quadratic equation by factorization:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4};x \ne 5, - 5$
The roots are $3,\dfrac{{ - 25}}{3}$.
(a) True
(b) False
Last updated date: 27th Mar 2023
•
Total views: 310.5k
•
Views today: 4.87k
Answer
310.5k+ views
Hint: Rationalize the identity so that the evaluation becomes simple. Also, the standard identities can be easily used.
We have the given quadratic equation as:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$
By rationalization, we get,
$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)
Now, we know the identities,
${(a + b)^2} = {a^2} + {b^2} + 2ab$
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$({a^2} - {b^2}) = (a - b)(a + b)$
Therefore, by using these identities, we get the equation (1) as
$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
Multiplying both sides by $\dfrac{1}{5}$ , we get,
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$
$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$
$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$
$ \Rightarrow 16x = 75 - 3{x^2}$
$ \Rightarrow 3{x^2} + 16x - 75 = 0$
$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$
$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$
$ \Rightarrow (x - 3)(3x + 25) = 0$
Now, either $(x - 3) = 0$
$\therefore x = 3$
Or $(3x + 25) = 0$
$\therefore x = \dfrac{{ - 25}}{3}$
Hence, the roots are $3,\dfrac{{ - 25}}{3}$.
So, the required solution is (a) True.
Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.
We have the given quadratic equation as:
$\dfrac{{5 + x}}{{5 - x}} - \dfrac{{5 - x}}{{5 + x}} = 3\dfrac{3}{4}$
By rationalization, we get,
$ \Rightarrow \dfrac{{5 + x}}{{5 - x}}\left( {\dfrac{{5 + x}}{{5 + x}}} \right) - \dfrac{{5 - x}}{{5 + x}}\left( {\dfrac{{5 - x}}{{5 - x}}} \right) = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{{{(5 + x)}^2} - {{(5 - x)}^2}}}{{(5 + x)(5 - x)}} = \dfrac{{15}}{4}$ … (1)
Now, we know the identities,
${(a + b)^2} = {a^2} + {b^2} + 2ab$
${(a - b)^2} = {a^2} + {b^2} - 2ab$
$({a^2} - {b^2}) = (a - b)(a + b)$
Therefore, by using these identities, we get the equation (1) as
$ \Rightarrow \dfrac{{({{(5)}^2} + 10x + {x^2}) - ({{(5)}^2} - 10x + {x^2})}}{{({{(5)}^2} - {{(x)}^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{(25 + 10x + {x^2} - 25 + 10x - {x^2})}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} = \dfrac{{15}}{4}$
Multiplying both sides by $\dfrac{1}{5}$ , we get,
$ \Rightarrow \dfrac{{20x}}{{(25 - {x^2})}} \times \left( {\dfrac{1}{5}} \right) = \dfrac{{15}}{4} \times \left( {\dfrac{1}{5}} \right)$
$ \Rightarrow \dfrac{{4x}}{{(25 - {x^2})}} = \dfrac{3}{4}$
$ \Rightarrow (4x) \times 4 = 3 \times (25 - {x^2})$
$ \Rightarrow 16x = 75 - 3{x^2}$
$ \Rightarrow 3{x^2} + 16x - 75 = 0$
$ \Rightarrow 3{x^2} + 25x - 9x - 75 = 0$
$ \Rightarrow x(3x + 25) - 3(3x + 25) = 0$
$ \Rightarrow (x - 3)(3x + 25) = 0$
Now, either $(x - 3) = 0$
$\therefore x = 3$
Or $(3x + 25) = 0$
$\therefore x = \dfrac{{ - 25}}{3}$
Hence, the roots are $3,\dfrac{{ - 25}}{3}$.
So, the required solution is (a) True.
Note: In order to solve these types of questions, an adequate knowledge of standard identities is needed, after substituting these identities in the quadratic equations, further evaluation will lead to the desired result.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
