Solve the following quadratic equation,
$3{x^2} - 4x + \frac{{20}}{3} = 0$
Last updated date: 25th Mar 2023
•
Total views: 309.6k
•
Views today: 2.86k
Answer
309.6k+ views
Hint: Compare the equation with the general quadratic equation, then use the formula for finding out the roots of a quadratic equation.
The given quadratic equation is $3{x^2} - 4x + \frac{{20}}{3} = 0$,
Comparing it with general quadratic equation, $a{x^2} + bx + c = 0$, we have:
$a = 3,b = - 4$ and $c = \frac{{20}}{3}$
And we know that the roots of quadratic equation is given as:
$\alpha ,\beta = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values from the above equation, we have:
$
\Rightarrow \alpha ,\beta = \frac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4 \times 3 \times \frac{{20}}{3}} }}{{2(3)}}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm \sqrt {16 - 80} }}{6} = \frac{{4 \pm \sqrt { - 64} }}{6}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm 8i}}{6} = \frac{{2 \pm 4i}}{3} \\
$
$ \Rightarrow \alpha = \frac{2}{3} + \frac{4}{3}i$ and $\beta = \frac{2}{3} - \frac{4}{3}i.$
Thus the roots of the equation are $\frac{2}{3} + \frac{4}{3}i$ and $\frac{2}{3} - \frac{4}{3}i$
Note: Discriminant of a quadratic equation is:
$ \Rightarrow D = {b^2} - 4ac$
If the discriminant of a quadratic equation is less than zero (i.e. negative), the roots of the equation will always be imaginary and they will be complex conjugates of each other.
The given quadratic equation is $3{x^2} - 4x + \frac{{20}}{3} = 0$,
Comparing it with general quadratic equation, $a{x^2} + bx + c = 0$, we have:
$a = 3,b = - 4$ and $c = \frac{{20}}{3}$
And we know that the roots of quadratic equation is given as:
$\alpha ,\beta = \frac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$
Substituting the values from the above equation, we have:
$
\Rightarrow \alpha ,\beta = \frac{{ - ( - 4) \pm \sqrt {{{( - 4)}^2} - 4 \times 3 \times \frac{{20}}{3}} }}{{2(3)}}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm \sqrt {16 - 80} }}{6} = \frac{{4 \pm \sqrt { - 64} }}{6}, \\
\Rightarrow \alpha ,\beta = \frac{{4 \pm 8i}}{6} = \frac{{2 \pm 4i}}{3} \\
$
$ \Rightarrow \alpha = \frac{2}{3} + \frac{4}{3}i$ and $\beta = \frac{2}{3} - \frac{4}{3}i.$
Thus the roots of the equation are $\frac{2}{3} + \frac{4}{3}i$ and $\frac{2}{3} - \frac{4}{3}i$
Note: Discriminant of a quadratic equation is:
$ \Rightarrow D = {b^2} - 4ac$
If the discriminant of a quadratic equation is less than zero (i.e. negative), the roots of the equation will always be imaginary and they will be complex conjugates of each other.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
