Answer
Verified
493.2k+ views
Hint: We first find the nature of system of linear equations, if the nature of system of equations are intersecting lines then we will have a unique solution, if the nature of system of equations are coincident then we will have infinite number of solutions, if the nature of system of equations are parallel then there will be no solutions.
Complete step-by-step answer:
First, we will find the nature of a pair of linear equations.
If ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ are pair of linear equations in two variables
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}$ then lines are intersecting.
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$ then lines are parallel.
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$ then lines are coincident.
Pair of linear equations are $3=2x+y\cdot \cdot \cdot \cdot \cdot (1)$ and $9=4x-y\cdot \cdot \cdot \cdot \cdot (2)$
Now, we will find the nature of linear equations.
$\begin{align}
& {{a}_{1}}=2,{{b}_{1}}=1,{{c}_{1}}=-3 \\
& {{a}_{2}}=4,{{b}_{2}}=-1,{{c}_{2}}=9 \\
\end{align}$$$$$
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{2}{4}=\dfrac{1}{2}$ and $\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{1}{-1}=-1$
Here $\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}$ then lines are intersecting.
So, it has a unique solution.
So, now we will solve for x and y.
We will add both equations (1) and (2)
$\Rightarrow 12=6x$
$\Rightarrow x=2$
Now we will substitute the obtained value of $x$ in either equation 1 or in equation 2. Now we will substitute value of $x$ i.e. 2 in equation 1 we will get,
$\begin{align}
& \Rightarrow 3=2\times (2)+y \\
& \Rightarrow y=3-4 \\
& \Rightarrow y=-1 \\
\end{align}$
We obtained the value of $x$ and $y$ by solving equation 1 and equation 2.
The values of $x$ and $y$ are 2 and -1 respectively.
$x=2,y=-1$.
Note: While solving a pair of linear equations in two variables first we will find the nature of a pair of linear equations in two variables and then, we proceed to solve if lines are not parallel.
Complete step-by-step answer:
First, we will find the nature of a pair of linear equations.
If ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0$ and ${{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ are pair of linear equations in two variables
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}$ then lines are intersecting.
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}\ne \dfrac{{{c}_{1}}}{{{c}_{2}}}$ then lines are parallel.
If $\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{{{c}_{1}}}{{{c}_{2}}}$ then lines are coincident.
Pair of linear equations are $3=2x+y\cdot \cdot \cdot \cdot \cdot (1)$ and $9=4x-y\cdot \cdot \cdot \cdot \cdot (2)$
Now, we will find the nature of linear equations.
$\begin{align}
& {{a}_{1}}=2,{{b}_{1}}=1,{{c}_{1}}=-3 \\
& {{a}_{2}}=4,{{b}_{2}}=-1,{{c}_{2}}=9 \\
\end{align}$$$$$
$\dfrac{{{a}_{1}}}{{{a}_{2}}}=\dfrac{2}{4}=\dfrac{1}{2}$ and $\dfrac{{{b}_{1}}}{{{b}_{2}}}=\dfrac{1}{-1}=-1$
Here $\dfrac{{{a}_{1}}}{{{a}_{2}}}\ne \dfrac{{{b}_{1}}}{{{b}_{2}}}$ then lines are intersecting.
So, it has a unique solution.
So, now we will solve for x and y.
We will add both equations (1) and (2)
$\Rightarrow 12=6x$
$\Rightarrow x=2$
Now we will substitute the obtained value of $x$ in either equation 1 or in equation 2. Now we will substitute value of $x$ i.e. 2 in equation 1 we will get,
$\begin{align}
& \Rightarrow 3=2\times (2)+y \\
& \Rightarrow y=3-4 \\
& \Rightarrow y=-1 \\
\end{align}$
We obtained the value of $x$ and $y$ by solving equation 1 and equation 2.
The values of $x$ and $y$ are 2 and -1 respectively.
$x=2,y=-1$.
Note: While solving a pair of linear equations in two variables first we will find the nature of a pair of linear equations in two variables and then, we proceed to solve if lines are not parallel.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
10 examples of friction in our daily life
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
What is pollution? How many types of pollution? Define it