
Solve the following inequalities $\dfrac{{2x + 7}}{2} \leqslant 12,{\text{ x}} \in {\text{W}}$.
Answer
607.2k+ views
Hint- We need to solve the given inequality, but first let’s talk about the meaning of ${\text{x}} \in {\text{W}}$.This means that the value of x that will satisfy the given inequality should belong to set of whole numbers only. A whole number is one which is not a mixed fraction or any rational number, in fact these are just extended classes of natural numbers and they start with 0, 1, 2……………………..infinity.
Complete step-by-step answer:
Now let’s solve the given inequality $\dfrac{{2x + 7}}{2} \leqslant 12,{\text{ x}} \in {\text{W}}$
Let’s take the denominator part to the right hand side of the inequality we get
$2x + 7 \leqslant 24$
Now taking 7 to the right hand side of the equality we get
$
\Rightarrow 2x \leqslant 17 \\
\Rightarrow x \leqslant \dfrac{{17}}{2} \\
\\
$
Or $x \leqslant 8.5$………………. (1)
Now by the definition of whole numbers there are extended kinds of natural numbers which starts from 0 and goes up to infinity.
Now the value of x should be less than or equal to 8.5. However 8.5 is not a whole number thus the nearest whole number lesser than 8.5 is 8.
Thus the value of x is going from 0 to 8.
Hence the values of x satisfying the inequality $\dfrac{{2x + 7}}{2} \leqslant 12,{\text{ x}} \in {\text{W}}$ are 0, 1, 2, 3……..8.
Note – Whenever we face such type of problems the note point is to figure out what are the set of values of x being asked in the problem statement, just like in this case it was the set of whole numbers.
This will help you reach the right answer for the required values of x.
Complete step-by-step answer:
Now let’s solve the given inequality $\dfrac{{2x + 7}}{2} \leqslant 12,{\text{ x}} \in {\text{W}}$
Let’s take the denominator part to the right hand side of the inequality we get
$2x + 7 \leqslant 24$
Now taking 7 to the right hand side of the equality we get
$
\Rightarrow 2x \leqslant 17 \\
\Rightarrow x \leqslant \dfrac{{17}}{2} \\
\\
$
Or $x \leqslant 8.5$………………. (1)
Now by the definition of whole numbers there are extended kinds of natural numbers which starts from 0 and goes up to infinity.
Now the value of x should be less than or equal to 8.5. However 8.5 is not a whole number thus the nearest whole number lesser than 8.5 is 8.
Thus the value of x is going from 0 to 8.
Hence the values of x satisfying the inequality $\dfrac{{2x + 7}}{2} \leqslant 12,{\text{ x}} \in {\text{W}}$ are 0, 1, 2, 3……..8.
Note – Whenever we face such type of problems the note point is to figure out what are the set of values of x being asked in the problem statement, just like in this case it was the set of whole numbers.
This will help you reach the right answer for the required values of x.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

