     Question Answers

# Solve the following; If ${a^2}$,${b^2}$,${c^2}$ are in A.P., show that $b + c$, $c + a$,$a + b$ are in H.P.  Hint: First, We should try to convert given terms ${a^2}$, ${b^2}$, ${c^2}$ to the terms somewhat similar to terms what is to be shown i.e. $b + c$,$c + a$,$a + b$ by adding or subtracting some additional terms, see if some factors are made or not.

Given ${a^2},{b^2},{c^2}$ are in A.P.
By adding $(ab + ac + bc)$ to each term of given A.P.
We see that ${a^2} + ab + ac + bc$,${b^2} + ab + ac + bc$,${c^2} + ab + ac + bc$ are also in A.P.
Convert each term in factor form
${a^2} + ab + ac + bc = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + c} \right)\left( {a + b} \right)$
${b^2} + ab + ac + bc = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right)$
${c^2} + ac + ab + bc = c\left( {c + a} \right) + b\left( {a + c} \right) = \left( {c + b} \right)\left( {a + c} \right)$
Also we can write terms of above A.P. in another way like
$\left( {a + b} \right)\left( {a + c} \right)$,$\left( {a + b} \right)\left( {b + c} \right)$,$\left( {c + a} \right)\left( {c + b} \right)$ are in A.P.
Now we divide each term by $\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)$
We get$\dfrac{1}{{b + c}}$,$\dfrac{1}{{c + a}}$,$\dfrac{1}{{a + b}}$ are in A.P.
So we can say that$b + c$,$c + a$,$a + b$ are in H.P.
Hence proved

Note: Arithmetic progression (A.P) means a sequence in which each differs from the preceding one by a constant quantity. Harmonic progression means a series when their reciprocal is in arithmetic progression.
View Notes
Sequences and Series  What are The Fundamental Forces in Nature?  Solve the Pair of Linear Equation  Convergence in Mathematics  What if the Earth Stopped Spinning?  Group Theory in Mathematics  Fundamentals Concepts in Mathematics  What are the Successor and Predecessor?  What Happens if the Earth Stops Rotating?  What are the Domains of the Earth  