Answer
Verified
466.5k+ views
Hint: First, We should try to convert given terms ${a^2}$, ${b^2}$, ${c^2}$ to the terms somewhat similar to terms what is to be shown i.e. $b + c$,$c + a$,$a + b$ by adding or subtracting some additional terms, see if some factors are made or not.
Given ${a^2},{b^2},{c^2}$ are in A.P.
By adding $(ab + ac + bc)$ to each term of given A.P.
We see that ${a^2} + ab + ac + bc$,${b^2} + ab + ac + bc$,\[{c^2} + ab + ac + bc\] are also in A.P.
Convert each term in factor form
${a^2} + ab + ac + bc = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + c} \right)\left( {a + b} \right)$
${b^2} + ab + ac + bc = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right)$
${c^2} + ac + ab + bc = c\left( {c + a} \right) + b\left( {a + c} \right) = \left( {c + b} \right)\left( {a + c} \right)$
Also we can write terms of above A.P. in another way like
$\left( {a + b} \right)\left( {a + c} \right)$,$\left( {a + b} \right)\left( {b + c} \right)$,$\left( {c + a} \right)\left( {c + b} \right)$ are in A.P.
Now we divide each term by $\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)$
We get$\dfrac{1}{{b + c}}$,$\dfrac{1}{{c + a}}$,$\dfrac{1}{{a + b}}$ are in A.P.
So we can say that$b + c$,$c + a$,$a + b$ are in H.P.
Hence proved
Note: Arithmetic progression (A.P) means a sequence in which each differs from the preceding one by a constant quantity. Harmonic progression means a series when their reciprocal is in arithmetic progression.
Given ${a^2},{b^2},{c^2}$ are in A.P.
By adding $(ab + ac + bc)$ to each term of given A.P.
We see that ${a^2} + ab + ac + bc$,${b^2} + ab + ac + bc$,\[{c^2} + ab + ac + bc\] are also in A.P.
Convert each term in factor form
${a^2} + ab + ac + bc = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + c} \right)\left( {a + b} \right)$
${b^2} + ab + ac + bc = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right)$
${c^2} + ac + ab + bc = c\left( {c + a} \right) + b\left( {a + c} \right) = \left( {c + b} \right)\left( {a + c} \right)$
Also we can write terms of above A.P. in another way like
$\left( {a + b} \right)\left( {a + c} \right)$,$\left( {a + b} \right)\left( {b + c} \right)$,$\left( {c + a} \right)\left( {c + b} \right)$ are in A.P.
Now we divide each term by $\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)$
We get$\dfrac{1}{{b + c}}$,$\dfrac{1}{{c + a}}$,$\dfrac{1}{{a + b}}$ are in A.P.
So we can say that$b + c$,$c + a$,$a + b$ are in H.P.
Hence proved
Note: Arithmetic progression (A.P) means a sequence in which each differs from the preceding one by a constant quantity. Harmonic progression means a series when their reciprocal is in arithmetic progression.
Recently Updated Pages
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Advantages and disadvantages of science
Trending doubts
Bimbisara was the founder of dynasty A Nanda B Haryanka class 6 social science CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
10 examples of evaporation in daily life with explanations
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
Difference Between Plant Cell and Animal Cell