Solve the following; If ${a^2}$,${b^2}$,${c^2}$ are in A.P., show that $b + c$, $c + a$,$a + b$ are in H.P.
Answer
Verified
506.7k+ views
Hint: First, We should try to convert given terms ${a^2}$, ${b^2}$, ${c^2}$ to the terms somewhat similar to terms what is to be shown i.e. $b + c$,$c + a$,$a + b$ by adding or subtracting some additional terms, see if some factors are made or not.
Given ${a^2},{b^2},{c^2}$ are in A.P.
By adding $(ab + ac + bc)$ to each term of given A.P.
We see that ${a^2} + ab + ac + bc$,${b^2} + ab + ac + bc$,\[{c^2} + ab + ac + bc\] are also in A.P.
Convert each term in factor form
${a^2} + ab + ac + bc = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + c} \right)\left( {a + b} \right)$
${b^2} + ab + ac + bc = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right)$
${c^2} + ac + ab + bc = c\left( {c + a} \right) + b\left( {a + c} \right) = \left( {c + b} \right)\left( {a + c} \right)$
Also we can write terms of above A.P. in another way like
$\left( {a + b} \right)\left( {a + c} \right)$,$\left( {a + b} \right)\left( {b + c} \right)$,$\left( {c + a} \right)\left( {c + b} \right)$ are in A.P.
Now we divide each term by $\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)$
We get$\dfrac{1}{{b + c}}$,$\dfrac{1}{{c + a}}$,$\dfrac{1}{{a + b}}$ are in A.P.
So we can say that$b + c$,$c + a$,$a + b$ are in H.P.
Hence proved
Note: Arithmetic progression (A.P) means a sequence in which each differs from the preceding one by a constant quantity. Harmonic progression means a series when their reciprocal is in arithmetic progression.
Given ${a^2},{b^2},{c^2}$ are in A.P.
By adding $(ab + ac + bc)$ to each term of given A.P.
We see that ${a^2} + ab + ac + bc$,${b^2} + ab + ac + bc$,\[{c^2} + ab + ac + bc\] are also in A.P.
Convert each term in factor form
${a^2} + ab + ac + bc = a\left( {a + b} \right) + c\left( {a + b} \right) = \left( {a + c} \right)\left( {a + b} \right)$
${b^2} + ab + ac + bc = b\left( {b + a} \right) + c\left( {a + b} \right) = \left( {a + b} \right)\left( {b + c} \right)$
${c^2} + ac + ab + bc = c\left( {c + a} \right) + b\left( {a + c} \right) = \left( {c + b} \right)\left( {a + c} \right)$
Also we can write terms of above A.P. in another way like
$\left( {a + b} \right)\left( {a + c} \right)$,$\left( {a + b} \right)\left( {b + c} \right)$,$\left( {c + a} \right)\left( {c + b} \right)$ are in A.P.
Now we divide each term by $\left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right)$
We get$\dfrac{1}{{b + c}}$,$\dfrac{1}{{c + a}}$,$\dfrac{1}{{a + b}}$ are in A.P.
So we can say that$b + c$,$c + a$,$a + b$ are in H.P.
Hence proved
Note: Arithmetic progression (A.P) means a sequence in which each differs from the preceding one by a constant quantity. Harmonic progression means a series when their reciprocal is in arithmetic progression.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
10 examples of evaporation in daily life with explanations
Differentiate between natural and artificial ecosy class 10 biology CBSE