Answer
Verified
495.6k+ views
Hint: - Here, we just factorize the equation and take out common, to solve the equation.
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
We just factorize the equation which are under the root and write in its factor form as
$\sqrt {\left( {2x + 7} \right)\left( {x - 1} \right)} + \sqrt {3\left( {x - 1} \right)\left( {x - 6} \right)} + \sqrt {\left( {7x + 1} \right)\left( {x - 1} \right)} = 0$
And from here we take $\sqrt {\left( {x - 1} \right)} $ as common and write as
$\left( {\sqrt {\left( {x - 1} \right)} } \right)\left( {\sqrt {{\text{2x + 7}}} {\text{ + }}\sqrt {{\text{3}}\left( {{\text{x - 6}}} \right)} {\text{ - }}\sqrt {\left( {{\text{7x + 1}}} \right)} } \right) = 0$
By the above equation either $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$or $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
If $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$then $x = 1$and
If $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
We write it as
$\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} = \sqrt {\left( {7x + 1} \right)} $
On squaring we get
$2x + 7 + 3x - 18 + 2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 7x + 1$
And by solving
$
2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 2x + 12 \\
On squaring we get
3\left( {2x + 7} \right)\left( {x - 6} \right) = {\left( {x + 6} \right)^2} \\
6{x^2} - 15x - 126 = {x^2} + 36 + 12x \\
5{x^2} - 27x - 162 = 0 \\
5{x^2} - 45x + 18x - 162 = 0 \\
5x\left( {x - 9} \right) + 18\left( {x - 9} \right) = 0 \\
\left( {x - 9} \right)\left( {5x + 18} \right) = 0 \\
$
We get $x = 9$ and $x = \dfrac{{ - 18}}{5}$
$\therefore $ The values for $x$ are $1, 9$ and $\dfrac{{ - 18}}{5}$
Note:-Whenever such types of questions are given just try to factorize the equation to take out common from the roots to make the question easy to solve. And then solve the equation to find out the values.
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
We just factorize the equation which are under the root and write in its factor form as
$\sqrt {\left( {2x + 7} \right)\left( {x - 1} \right)} + \sqrt {3\left( {x - 1} \right)\left( {x - 6} \right)} + \sqrt {\left( {7x + 1} \right)\left( {x - 1} \right)} = 0$
And from here we take $\sqrt {\left( {x - 1} \right)} $ as common and write as
$\left( {\sqrt {\left( {x - 1} \right)} } \right)\left( {\sqrt {{\text{2x + 7}}} {\text{ + }}\sqrt {{\text{3}}\left( {{\text{x - 6}}} \right)} {\text{ - }}\sqrt {\left( {{\text{7x + 1}}} \right)} } \right) = 0$
By the above equation either $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$or $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
If $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$then $x = 1$and
If $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
We write it as
$\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} = \sqrt {\left( {7x + 1} \right)} $
On squaring we get
$2x + 7 + 3x - 18 + 2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 7x + 1$
And by solving
$
2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 2x + 12 \\
On squaring we get
3\left( {2x + 7} \right)\left( {x - 6} \right) = {\left( {x + 6} \right)^2} \\
6{x^2} - 15x - 126 = {x^2} + 36 + 12x \\
5{x^2} - 27x - 162 = 0 \\
5{x^2} - 45x + 18x - 162 = 0 \\
5x\left( {x - 9} \right) + 18\left( {x - 9} \right) = 0 \\
\left( {x - 9} \right)\left( {5x + 18} \right) = 0 \\
$
We get $x = 9$ and $x = \dfrac{{ - 18}}{5}$
$\therefore $ The values for $x$ are $1, 9$ and $\dfrac{{ - 18}}{5}$
Note:-Whenever such types of questions are given just try to factorize the equation to take out common from the roots to make the question easy to solve. And then solve the equation to find out the values.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Kaziranga National Park is famous for A Lion B Tiger class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Write a letter to the principal requesting him to grant class 10 english CBSE