
Solve the following equations:
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
Answer
595.8k+ views
Hint: - Here, we just factorize the equation and take out common, to solve the equation.
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
We just factorize the equation which are under the root and write in its factor form as
$\sqrt {\left( {2x + 7} \right)\left( {x - 1} \right)} + \sqrt {3\left( {x - 1} \right)\left( {x - 6} \right)} + \sqrt {\left( {7x + 1} \right)\left( {x - 1} \right)} = 0$
And from here we take $\sqrt {\left( {x - 1} \right)} $ as common and write as
$\left( {\sqrt {\left( {x - 1} \right)} } \right)\left( {\sqrt {{\text{2x + 7}}} {\text{ + }}\sqrt {{\text{3}}\left( {{\text{x - 6}}} \right)} {\text{ - }}\sqrt {\left( {{\text{7x + 1}}} \right)} } \right) = 0$
By the above equation either $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$or $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
If $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$then $x = 1$and
If $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
We write it as
$\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} = \sqrt {\left( {7x + 1} \right)} $
On squaring we get
$2x + 7 + 3x - 18 + 2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 7x + 1$
And by solving
$
2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 2x + 12 \\
On squaring we get
3\left( {2x + 7} \right)\left( {x - 6} \right) = {\left( {x + 6} \right)^2} \\
6{x^2} - 15x - 126 = {x^2} + 36 + 12x \\
5{x^2} - 27x - 162 = 0 \\
5{x^2} - 45x + 18x - 162 = 0 \\
5x\left( {x - 9} \right) + 18\left( {x - 9} \right) = 0 \\
\left( {x - 9} \right)\left( {5x + 18} \right) = 0 \\
$
We get $x = 9$ and $x = \dfrac{{ - 18}}{5}$
$\therefore $ The values for $x$ are $1, 9$ and $\dfrac{{ - 18}}{5}$
Note:-Whenever such types of questions are given just try to factorize the equation to take out common from the roots to make the question easy to solve. And then solve the equation to find out the values.
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
We just factorize the equation which are under the root and write in its factor form as
$\sqrt {\left( {2x + 7} \right)\left( {x - 1} \right)} + \sqrt {3\left( {x - 1} \right)\left( {x - 6} \right)} + \sqrt {\left( {7x + 1} \right)\left( {x - 1} \right)} = 0$
And from here we take $\sqrt {\left( {x - 1} \right)} $ as common and write as
$\left( {\sqrt {\left( {x - 1} \right)} } \right)\left( {\sqrt {{\text{2x + 7}}} {\text{ + }}\sqrt {{\text{3}}\left( {{\text{x - 6}}} \right)} {\text{ - }}\sqrt {\left( {{\text{7x + 1}}} \right)} } \right) = 0$
By the above equation either $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$or $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
If $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$then $x = 1$and
If $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
We write it as
$\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} = \sqrt {\left( {7x + 1} \right)} $
On squaring we get
$2x + 7 + 3x - 18 + 2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 7x + 1$
And by solving
$
2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 2x + 12 \\
On squaring we get
3\left( {2x + 7} \right)\left( {x - 6} \right) = {\left( {x + 6} \right)^2} \\
6{x^2} - 15x - 126 = {x^2} + 36 + 12x \\
5{x^2} - 27x - 162 = 0 \\
5{x^2} - 45x + 18x - 162 = 0 \\
5x\left( {x - 9} \right) + 18\left( {x - 9} \right) = 0 \\
\left( {x - 9} \right)\left( {5x + 18} \right) = 0 \\
$
We get $x = 9$ and $x = \dfrac{{ - 18}}{5}$
$\therefore $ The values for $x$ are $1, 9$ and $\dfrac{{ - 18}}{5}$
Note:-Whenever such types of questions are given just try to factorize the equation to take out common from the roots to make the question easy to solve. And then solve the equation to find out the values.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Which scientist proved that even plants have feelings class 10 physics CBSE

Write any two uses of Plaster of Paris class 10 chemistry CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

Five things I will do to build a great India class 10 english CBSE

