Courses
Courses for Kids
Free study material
Free LIVE classes
More
Questions & Answers
seo-qna
LIVE
Join Vedantu’s FREE Mastercalss

Solve the following equations:
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$

Answer
VerifiedVerified
363k+ views
Hint: - Here, we just factorize the equation and take out common, to solve the equation.
$\sqrt {2{x^2} + 5x - 7} + \sqrt {3\left( {{x^2} - 7x + 6} \right)} - \sqrt {7{x^2} - 6x - 1} = 0$
We just factorize the equation which are under the root and write in its factor form as
$\sqrt {\left( {2x + 7} \right)\left( {x - 1} \right)} + \sqrt {3\left( {x - 1} \right)\left( {x - 6} \right)} + \sqrt {\left( {7x + 1} \right)\left( {x - 1} \right)} = 0$
And from here we take $\sqrt {\left( {x - 1} \right)} $ as common and write as
$\left( {\sqrt {\left( {x - 1} \right)} } \right)\left( {\sqrt {{\text{2x + 7}}} {\text{ + }}\sqrt {{\text{3}}\left( {{\text{x - 6}}} \right)} {\text{ - }}\sqrt {\left( {{\text{7x + 1}}} \right)} } \right) = 0$
By the above equation either $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$or $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
If $\sqrt {\left( {x - 1} \right)} = 0{\text{ }}$then $x = 1$and
If $\left( {\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} - \sqrt {\left( {7x + 1} \right)} } \right) = 0$
We write it as
$\sqrt {2x + 7} + \sqrt {3\left( {x - 6} \right)} = \sqrt {\left( {7x + 1} \right)} $
On squaring we get
$2x + 7 + 3x - 18 + 2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 7x + 1$
And by solving
$
  2\sqrt {3\left( {2x + 7} \right)\left( {x - 6} \right)} = 2x + 12 \\
 On squaring we get
 3\left( {2x + 7} \right)\left( {x - 6} \right) = {\left( {x + 6} \right)^2} \\
  6{x^2} - 15x - 126 = {x^2} + 36 + 12x \\
  5{x^2} - 27x - 162 = 0 \\
  5{x^2} - 45x + 18x - 162 = 0 \\
  5x\left( {x - 9} \right) + 18\left( {x - 9} \right) = 0 \\
  \left( {x - 9} \right)\left( {5x + 18} \right) = 0 \\
 $
We get $x = 9$ and $x = \dfrac{{ - 18}}{5}$
$\therefore $ The values for $x$ are $1, 9$ and $\dfrac{{ - 18}}{5}$

Note:-Whenever such types of questions are given just try to factorize the equation to take out common from the roots to make the question easy to solve. And then solve the equation to find out the values.
Last updated date: 20th Sep 2023
•
Total views: 363k
•
Views today: 4.63k