
Solve the following equations: $\left( x-7 \right)\left( x-3 \right)\left( x+5 \right)\left( x+1 \right)=1680$.
Answer
605.7k+ views
Hint: Take the average of all brackets given in the LHS of the equation and take it as another variable and form a new biquadratic equation. Now, solve it further to get values of that variable and hence values of ‘x’ as well.
Complete step-by-step answer:
The given equation is,
$\left( x-7 \right)\left( x-3 \right)\left( x+5 \right)\left( x+1 \right)=1680$…………….. (i)
Let us change the given variables ‘x’ by taking average of all brackets as a variables ’y’ in following way:-
$\Rightarrow$ $y=\dfrac{\left( x-7 \right)+\left( x-3 \right)+\left( x+5 \right)+\left( x+1 \right)}{4}$
$\Rightarrow$ $y=\dfrac{4x-4}{4}=x-1$
Hence, we get the value ’y’ as ‘x-1’. So, now ‘x’ can be written in form ‘y’ in following way:-
x=y+1………………(ii)
Let us replace variable ‘x’ from equation (i) with the help of equation (ii) hence we get,
$\Rightarrow$ $\left( y+1-7 \right)\left( y+1-3 \right)\left( y+1+5 \right)\left( y+1+1 \right)=1680$
$\Rightarrow$ \[\left( y-6 \right)\left( y-2 \right)\left( y+6 \right)\left( y+2 \right)=1680\]
Rewriting the above equation we get,
$\Rightarrow$ $\left( y-6 \right)\left( y+6 \right)\left( y-2 \right)\left( y+2 \right)=1680$…………. (iii)
Now, we can use an algebraic identity given as
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
So, we can simplify the equation (iii) using the above relation, we get
$\Rightarrow$ $\left( {{y}^{2}}-36 \right)\left( {{y}^{2}}-4 \right)=1680$……………. (iv)
Let ${{y}^{2}}=t$, so that we can solve the above equation in a simpler way. Hence, we get
$\Rightarrow$ $\left( t-36 \right)\left( t-4 \right)=1680$
Now, multiplying the both brackets, we get
$\begin{align}
& {{t}^{2}}-4t-36t+36\times 4=1680 \\
& {{t}^{2}}-40t+144=1680 \\
\end{align}$
${{t}^{2}}-40t-1536=0$………. (v)
Now we can get values of ‘t’ from the above equation by using quadratic formula. We know roots of quadratic $A{{x}^{2}}+Bx+C=0$ can be given as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Hence, value of ‘t’ from equation (V) be
$\begin{align}
& t=\dfrac{-(-40)\pm \sqrt{{{(-40)}^{2}}-4\times 1\times (-1536)}}{2\times 1} \\
& t=\dfrac{40\pm \sqrt{1600+4\times 1536}}{2} \\
& t=\dfrac{40\pm \sqrt{7744}}{2} \\
\end{align}$
Now, we can calculate the square root of 7744. So, we get
$t=\dfrac{40\pm 88}{2}$
So, two values of ‘t’ can be given as
$t=\dfrac{40+88}{2}$or$t=\dfrac{40-88}{2}$
Or
t=64 or t=-24
We had assumed $t={{y}^{2}}$; hence, we get
As we know squares of any number cannot be negative. ${{y}^{2}}$can never be -24.
So, we can ignore it. Hence,
${{y}^{2}}=64$
Taking square root on both sides, we get
$y=\pm 8$……………(vi)
Now, we can use relation x=y+1 from equation (ii) to get values of ‘x’. Hence,
x =8+1 and x=-8+1
x =9 and x=-7
So, values of ’x’ satisfying the given equation are 9, -7.
Note: One can think that a given polynomial is of degree’4’ so why is there only two roots 9 and -7. We can get two values of x from the relation ${{x}^{2}}=-24$which will be imaginary and will be in terms ‘i’. So imaginary roots can be given as
$x=2\sqrt{6i}$and$x=-2\sqrt{6i}$
Where,
\[i=\sqrt{-1}\]
So, there are two real and two imaginary roots of the given equation.
One can multiply the given brackets in the equation and can form a 4 degree polynomial. But guessing the roots 9 and -7 is very complex and difficult. So, take the average of all brackets and replace the given variable with another in these kinds of questions.
Complete step-by-step answer:
The given equation is,
$\left( x-7 \right)\left( x-3 \right)\left( x+5 \right)\left( x+1 \right)=1680$…………….. (i)
Let us change the given variables ‘x’ by taking average of all brackets as a variables ’y’ in following way:-
$\Rightarrow$ $y=\dfrac{\left( x-7 \right)+\left( x-3 \right)+\left( x+5 \right)+\left( x+1 \right)}{4}$
$\Rightarrow$ $y=\dfrac{4x-4}{4}=x-1$
Hence, we get the value ’y’ as ‘x-1’. So, now ‘x’ can be written in form ‘y’ in following way:-
x=y+1………………(ii)
Let us replace variable ‘x’ from equation (i) with the help of equation (ii) hence we get,
$\Rightarrow$ $\left( y+1-7 \right)\left( y+1-3 \right)\left( y+1+5 \right)\left( y+1+1 \right)=1680$
$\Rightarrow$ \[\left( y-6 \right)\left( y-2 \right)\left( y+6 \right)\left( y+2 \right)=1680\]
Rewriting the above equation we get,
$\Rightarrow$ $\left( y-6 \right)\left( y+6 \right)\left( y-2 \right)\left( y+2 \right)=1680$…………. (iii)
Now, we can use an algebraic identity given as
$\left( a-b \right)\left( a+b \right)={{a}^{2}}-{{b}^{2}}$
So, we can simplify the equation (iii) using the above relation, we get
$\Rightarrow$ $\left( {{y}^{2}}-36 \right)\left( {{y}^{2}}-4 \right)=1680$……………. (iv)
Let ${{y}^{2}}=t$, so that we can solve the above equation in a simpler way. Hence, we get
$\Rightarrow$ $\left( t-36 \right)\left( t-4 \right)=1680$
Now, multiplying the both brackets, we get
$\begin{align}
& {{t}^{2}}-4t-36t+36\times 4=1680 \\
& {{t}^{2}}-40t+144=1680 \\
\end{align}$
${{t}^{2}}-40t-1536=0$………. (v)
Now we can get values of ‘t’ from the above equation by using quadratic formula. We know roots of quadratic $A{{x}^{2}}+Bx+C=0$ can be given as
$x=\dfrac{-B\pm \sqrt{{{B}^{2}}-4AC}}{2A}$
Hence, value of ‘t’ from equation (V) be
$\begin{align}
& t=\dfrac{-(-40)\pm \sqrt{{{(-40)}^{2}}-4\times 1\times (-1536)}}{2\times 1} \\
& t=\dfrac{40\pm \sqrt{1600+4\times 1536}}{2} \\
& t=\dfrac{40\pm \sqrt{7744}}{2} \\
\end{align}$
Now, we can calculate the square root of 7744. So, we get
$t=\dfrac{40\pm 88}{2}$
So, two values of ‘t’ can be given as
$t=\dfrac{40+88}{2}$or$t=\dfrac{40-88}{2}$
Or
t=64 or t=-24
We had assumed $t={{y}^{2}}$; hence, we get
As we know squares of any number cannot be negative. ${{y}^{2}}$can never be -24.
So, we can ignore it. Hence,
${{y}^{2}}=64$
Taking square root on both sides, we get
$y=\pm 8$……………(vi)
Now, we can use relation x=y+1 from equation (ii) to get values of ‘x’. Hence,
x =8+1 and x=-8+1
x =9 and x=-7
So, values of ’x’ satisfying the given equation are 9, -7.
Note: One can think that a given polynomial is of degree’4’ so why is there only two roots 9 and -7. We can get two values of x from the relation ${{x}^{2}}=-24$which will be imaginary and will be in terms ‘i’. So imaginary roots can be given as
$x=2\sqrt{6i}$and$x=-2\sqrt{6i}$
Where,
\[i=\sqrt{-1}\]
So, there are two real and two imaginary roots of the given equation.
One can multiply the given brackets in the equation and can form a 4 degree polynomial. But guessing the roots 9 and -7 is very complex and difficult. So, take the average of all brackets and replace the given variable with another in these kinds of questions.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

