Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Solve the following equations:
$\dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} .$

seo-qna
Last updated date: 23rd Jul 2024
Total views: 454.5k
Views today: 4.54k
Answer
VerifiedVerified
454.5k+ views
Hint: - Use \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
As we know \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], and \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
So, apply these properties
\[
   \Rightarrow \dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} . \\
   \Rightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\]
\[ \Rightarrow \left( {x + 1} \right)\]Is canceled out from the numerator and denominator.
\[
   \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
   \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} - x = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right) - {x^2} + x}}{{x - 1}} = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{1}{{x - 1}} = \sqrt {\dfrac{6}{x}} \\
\]
By, cross multiplication
\[ \Rightarrow 1 \times \sqrt x = \left( {x - 1} \right)\sqrt 6 \]
Now, squaring on both sides
\[
   \Rightarrow {\left( {\sqrt x } \right)^2} = {\left( {x - 1} \right)^2}{\left( {\sqrt 6 } \right)^2} \Rightarrow x = 6\left( {{x^2} + 1 - 2x} \right) \\
   \Rightarrow 6{x^2} - 13x + 6 = 0 \\
   \Rightarrow 6{x^2} - 9x - 4x + 6 = 0 \\
   \Rightarrow 3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0 \\
   \Rightarrow \left( {2x - 3} \right)\left( {3x - 2} \right) = 0 \\
   \Rightarrow \left( {2x - 3} \right) = 0{\text{, and }}\left( {3x - 2} \right) = 0 \\
   \Rightarrow x = \dfrac{3}{2},{\text{ and }}x = \dfrac{2}{3} \\
\]
So, this is the required answer.

Note: -In such types of questions always remember the basic formulas which are stated above then after cross multiplication factorize the equation and simplify the equation we will get the required solution of the equation.