
Solve the following equations:
$\dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} .$
Answer
609.3k+ views
Hint: - Use \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
As we know \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], and \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
So, apply these properties
\[
\Rightarrow \dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} . \\
\Rightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\]
\[ \Rightarrow \left( {x + 1} \right)\]Is canceled out from the numerator and denominator.
\[
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} - x = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right) - {x^2} + x}}{{x - 1}} = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{1}{{x - 1}} = \sqrt {\dfrac{6}{x}} \\
\]
By, cross multiplication
\[ \Rightarrow 1 \times \sqrt x = \left( {x - 1} \right)\sqrt 6 \]
Now, squaring on both sides
\[
\Rightarrow {\left( {\sqrt x } \right)^2} = {\left( {x - 1} \right)^2}{\left( {\sqrt 6 } \right)^2} \Rightarrow x = 6\left( {{x^2} + 1 - 2x} \right) \\
\Rightarrow 6{x^2} - 13x + 6 = 0 \\
\Rightarrow 6{x^2} - 9x - 4x + 6 = 0 \\
\Rightarrow 3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right)\left( {3x - 2} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right) = 0{\text{, and }}\left( {3x - 2} \right) = 0 \\
\Rightarrow x = \dfrac{3}{2},{\text{ and }}x = \dfrac{2}{3} \\
\]
So, this is the required answer.
Note: -In such types of questions always remember the basic formulas which are stated above then after cross multiplication factorize the equation and simplify the equation we will get the required solution of the equation.
As we know \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], and \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
So, apply these properties
\[
\Rightarrow \dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} . \\
\Rightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\]
\[ \Rightarrow \left( {x + 1} \right)\]Is canceled out from the numerator and denominator.
\[
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} - x = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right) - {x^2} + x}}{{x - 1}} = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{1}{{x - 1}} = \sqrt {\dfrac{6}{x}} \\
\]
By, cross multiplication
\[ \Rightarrow 1 \times \sqrt x = \left( {x - 1} \right)\sqrt 6 \]
Now, squaring on both sides
\[
\Rightarrow {\left( {\sqrt x } \right)^2} = {\left( {x - 1} \right)^2}{\left( {\sqrt 6 } \right)^2} \Rightarrow x = 6\left( {{x^2} + 1 - 2x} \right) \\
\Rightarrow 6{x^2} - 13x + 6 = 0 \\
\Rightarrow 6{x^2} - 9x - 4x + 6 = 0 \\
\Rightarrow 3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right)\left( {3x - 2} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right) = 0{\text{, and }}\left( {3x - 2} \right) = 0 \\
\Rightarrow x = \dfrac{3}{2},{\text{ and }}x = \dfrac{2}{3} \\
\]
So, this is the required answer.
Note: -In such types of questions always remember the basic formulas which are stated above then after cross multiplication factorize the equation and simplify the equation we will get the required solution of the equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

