Solve the following equations:
$\dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} .$
Answer
Verified
507.9k+ views
Hint: - Use \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
As we know \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], and \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
So, apply these properties
\[
\Rightarrow \dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} . \\
\Rightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\]
\[ \Rightarrow \left( {x + 1} \right)\]Is canceled out from the numerator and denominator.
\[
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} - x = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right) - {x^2} + x}}{{x - 1}} = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{1}{{x - 1}} = \sqrt {\dfrac{6}{x}} \\
\]
By, cross multiplication
\[ \Rightarrow 1 \times \sqrt x = \left( {x - 1} \right)\sqrt 6 \]
Now, squaring on both sides
\[
\Rightarrow {\left( {\sqrt x } \right)^2} = {\left( {x - 1} \right)^2}{\left( {\sqrt 6 } \right)^2} \Rightarrow x = 6\left( {{x^2} + 1 - 2x} \right) \\
\Rightarrow 6{x^2} - 13x + 6 = 0 \\
\Rightarrow 6{x^2} - 9x - 4x + 6 = 0 \\
\Rightarrow 3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right)\left( {3x - 2} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right) = 0{\text{, and }}\left( {3x - 2} \right) = 0 \\
\Rightarrow x = \dfrac{3}{2},{\text{ and }}x = \dfrac{2}{3} \\
\]
So, this is the required answer.
Note: -In such types of questions always remember the basic formulas which are stated above then after cross multiplication factorize the equation and simplify the equation we will get the required solution of the equation.
As we know \[{{\text{a}}^3} + {b^3} = \left( {a + b} \right)\left( {{a^2} + {b^2} - ab} \right)\], and \[\left( {{a^2} - {b^2}} \right) = \left( {a - b} \right)\left( {a + b} \right)\]
So, apply these properties
\[
\Rightarrow \dfrac{{{x^3} + 1}}{{{x^2} - 1}} = x + \sqrt {\dfrac{6}{x}} . \\
\Rightarrow \dfrac{{\left( {x + 1} \right)\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)\left( {x + 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\]
\[ \Rightarrow \left( {x + 1} \right)\]Is canceled out from the numerator and denominator.
\[
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} = x + \sqrt {\dfrac{6}{x}} \\
\Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right)}}{{\left( {x - 1} \right)}} - x = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{{\left( {{x^2} + 1 - x} \right) - {x^2} + x}}{{x - 1}} = \sqrt {\dfrac{6}{x}} \Rightarrow \dfrac{1}{{x - 1}} = \sqrt {\dfrac{6}{x}} \\
\]
By, cross multiplication
\[ \Rightarrow 1 \times \sqrt x = \left( {x - 1} \right)\sqrt 6 \]
Now, squaring on both sides
\[
\Rightarrow {\left( {\sqrt x } \right)^2} = {\left( {x - 1} \right)^2}{\left( {\sqrt 6 } \right)^2} \Rightarrow x = 6\left( {{x^2} + 1 - 2x} \right) \\
\Rightarrow 6{x^2} - 13x + 6 = 0 \\
\Rightarrow 6{x^2} - 9x - 4x + 6 = 0 \\
\Rightarrow 3x\left( {2x - 3} \right) - 2\left( {2x - 3} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right)\left( {3x - 2} \right) = 0 \\
\Rightarrow \left( {2x - 3} \right) = 0{\text{, and }}\left( {3x - 2} \right) = 0 \\
\Rightarrow x = \dfrac{3}{2},{\text{ and }}x = \dfrac{2}{3} \\
\]
So, this is the required answer.
Note: -In such types of questions always remember the basic formulas which are stated above then after cross multiplication factorize the equation and simplify the equation we will get the required solution of the equation.
Recently Updated Pages
Class 10 Question and Answer - Your Ultimate Solutions Guide
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
The capital of British India was transferred from Calcutta class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE