Answer

Verified

483.6k+ views

Hint: We are given two equations from which we have to find the value of $x,y$. From the given two equations, eliminate the term ${{x}^{2}}$. Then, solve the obtained equation with $5xy-6{{x}^{2}}=6$ to get the value of $\dfrac{y}{x}$. Use this value of $\dfrac{y}{x}$ with the two given equations to get the answer.

We are given two equations having variables $x$ and $y$ and we have to find the value of these variables by solving the two given equations. Let us denote the two given equations as,

$\begin{align}

& 5{{y}^{2}}-7{{x}^{2}}=17...........\left( 1 \right) \\

& 5xy-6{{x}^{2}}=6..............\left( 2 \right) \\

\end{align}$

First, we will eliminate ${{x}^{2}}$ from these two equations. For that, we will multiply the equation $\left( 1 \right)$ with $6$ and multiply the equation $\left( 2 \right)$ with $7$. Then we will subtract these two equations.

$\begin{align}

& 6\left( 5{{y}^{2}}-7{{x}^{2}} \right)-7\left( 5xy-6{{x}^{2}} \right)=17\times 6-6\times 7 \\

& \Rightarrow 30{{y}^{2}}-42{{x}^{2}}-35xy+42{{x}^{2}}=102-42 \\

& \Rightarrow 30{{y}^{2}}-35xy=60 \\

& \Rightarrow 5\left( 6{{y}^{2}}-7xy \right)=5\left( 12 \right) \\

& \Rightarrow 6{{y}^{2}}-7xy=12..............\left( 3 \right) \\

\end{align}$

Dividing equation $\left( 3 \right)$ and equation $\left( 2 \right)$, we get,

$\begin{align}

& \dfrac{6{{y}^{2}}-7xy}{5xy-6{{x}^{2}}}=\dfrac{12}{6} \\

& \Rightarrow \dfrac{y\left( 6y-7x \right)}{x\left( 5y-6x \right)}=2 \\

\end{align}$

Dividing numerator and denominator with $x^2$ in the left side of the above equation, we get,

$\begin{align}

& \dfrac{\dfrac{y}{x}\left( \dfrac{6y-7x}{x} \right)}{\left( \dfrac{5y-6x}{x} \right)}=2 \\

& \Rightarrow \dfrac{\dfrac{y}{x}\left( 6\dfrac{y}{x}-7 \right)}{\left( 5\dfrac{y}{x}-6 \right)}=2 \\

\end{align}$

Let us substitute $\dfrac{y}{x}=t$ in the above equation.

$\begin{align}

& \Rightarrow \dfrac{t\left( 6t-7 \right)}{\left( 5t-6 \right)}=2 \\

& \Rightarrow 6{{t}^{2}}-7t=2\left( 5t-6 \right) \\

& \Rightarrow 6{{t}^{2}}-7t=10t-12 \\

& \Rightarrow 6{{t}^{2}}-17t+12=0 \\

\end{align}$

To solve this quadratic equation, we will use a quadratic formula. Let us assume a quadratic equation $a{{x}^{2}}+bx+c=0$. From the quadratic formula, the roots of this equation are given by,

$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$

Using this quadratic formula in the equation $6{{t}^{2}}-17t+12=0$, we get,

$\begin{align}

& t=\dfrac{-\left( -17 \right)\pm \sqrt{{{\left( -17 \right)}^{2}}-4\left( 6 \right)\left( 12 \right)}}{2\left( 6 \right)} \\

& \Rightarrow t=\dfrac{17\pm \sqrt{289-288}}{12} \\

& \Rightarrow t=\dfrac{17\pm \sqrt{1}}{12} \\

& t=\dfrac{17\pm 1}{12} \\

& \Rightarrow t=\dfrac{18}{12},t=\dfrac{16}{12} \\

& \Rightarrow t=\dfrac{3}{2},t=\dfrac{4}{3} \\

\end{align}$

Resubstituting $t=\dfrac{y}{x}$, we get,

$\dfrac{y}{x}=\dfrac{3}{2},\dfrac{y}{x}=\dfrac{4}{3}$

$\Rightarrow y=\dfrac{3x}{2},y=\dfrac{4x}{3}.............\left( 4 \right)$

Substituting both the values of $y$ from equation $\left( 4 \right)$ in equation $\left( 2 \right)$, we get,

$\begin{align}

& 5x\left( \dfrac{3x}{2} \right)-6{{x}^{2}}=6,5x\left( \dfrac{4x}{3} \right)-6{{x}^{2}}=6 \\

& \Rightarrow \left( \dfrac{15{{x}^{2}}}{2} \right)-6{{x}^{2}}=6,\left( \dfrac{20{{x}^{2}}}{3} \right)-6{{x}^{2}}=6 \\

& \Rightarrow \dfrac{15{{x}^{2}}-12{{x}^{2}}}{2}=6,\dfrac{20{{x}^{2}}-18{{x}^{2}}}{3}=6 \\

& \Rightarrow 3{{x}^{2}}=12,2{{x}^{2}}=18 \\

& \Rightarrow {{x}^{2}}=4,{{x}^{2}}=9 \\

& \Rightarrow x=\pm 2,x=\pm 3 \\

\end{align}$

Substituting $x=\pm 2$ in $y=\dfrac{3x}{2}$ and $x=\pm 3$ in $y=\dfrac{4x}{3}$, we get,

$y=\pm 3,y=\pm 4$

So, the two possible answers are $x=\pm 2;y=\pm 3$ and $x=\pm 3;y=\pm 4$.

Hence, the answer is option (a) and option (b).

Note: There is an alternative approach to solve this problem very quickly. We can try to substitute each option in the equation given in the question. Whichever option satisfies the equation, that option will be considered as an answer.

We are given two equations having variables $x$ and $y$ and we have to find the value of these variables by solving the two given equations. Let us denote the two given equations as,

$\begin{align}

& 5{{y}^{2}}-7{{x}^{2}}=17...........\left( 1 \right) \\

& 5xy-6{{x}^{2}}=6..............\left( 2 \right) \\

\end{align}$

First, we will eliminate ${{x}^{2}}$ from these two equations. For that, we will multiply the equation $\left( 1 \right)$ with $6$ and multiply the equation $\left( 2 \right)$ with $7$. Then we will subtract these two equations.

$\begin{align}

& 6\left( 5{{y}^{2}}-7{{x}^{2}} \right)-7\left( 5xy-6{{x}^{2}} \right)=17\times 6-6\times 7 \\

& \Rightarrow 30{{y}^{2}}-42{{x}^{2}}-35xy+42{{x}^{2}}=102-42 \\

& \Rightarrow 30{{y}^{2}}-35xy=60 \\

& \Rightarrow 5\left( 6{{y}^{2}}-7xy \right)=5\left( 12 \right) \\

& \Rightarrow 6{{y}^{2}}-7xy=12..............\left( 3 \right) \\

\end{align}$

Dividing equation $\left( 3 \right)$ and equation $\left( 2 \right)$, we get,

$\begin{align}

& \dfrac{6{{y}^{2}}-7xy}{5xy-6{{x}^{2}}}=\dfrac{12}{6} \\

& \Rightarrow \dfrac{y\left( 6y-7x \right)}{x\left( 5y-6x \right)}=2 \\

\end{align}$

Dividing numerator and denominator with $x^2$ in the left side of the above equation, we get,

$\begin{align}

& \dfrac{\dfrac{y}{x}\left( \dfrac{6y-7x}{x} \right)}{\left( \dfrac{5y-6x}{x} \right)}=2 \\

& \Rightarrow \dfrac{\dfrac{y}{x}\left( 6\dfrac{y}{x}-7 \right)}{\left( 5\dfrac{y}{x}-6 \right)}=2 \\

\end{align}$

Let us substitute $\dfrac{y}{x}=t$ in the above equation.

$\begin{align}

& \Rightarrow \dfrac{t\left( 6t-7 \right)}{\left( 5t-6 \right)}=2 \\

& \Rightarrow 6{{t}^{2}}-7t=2\left( 5t-6 \right) \\

& \Rightarrow 6{{t}^{2}}-7t=10t-12 \\

& \Rightarrow 6{{t}^{2}}-17t+12=0 \\

\end{align}$

To solve this quadratic equation, we will use a quadratic formula. Let us assume a quadratic equation $a{{x}^{2}}+bx+c=0$. From the quadratic formula, the roots of this equation are given by,

$x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$

Using this quadratic formula in the equation $6{{t}^{2}}-17t+12=0$, we get,

$\begin{align}

& t=\dfrac{-\left( -17 \right)\pm \sqrt{{{\left( -17 \right)}^{2}}-4\left( 6 \right)\left( 12 \right)}}{2\left( 6 \right)} \\

& \Rightarrow t=\dfrac{17\pm \sqrt{289-288}}{12} \\

& \Rightarrow t=\dfrac{17\pm \sqrt{1}}{12} \\

& t=\dfrac{17\pm 1}{12} \\

& \Rightarrow t=\dfrac{18}{12},t=\dfrac{16}{12} \\

& \Rightarrow t=\dfrac{3}{2},t=\dfrac{4}{3} \\

\end{align}$

Resubstituting $t=\dfrac{y}{x}$, we get,

$\dfrac{y}{x}=\dfrac{3}{2},\dfrac{y}{x}=\dfrac{4}{3}$

$\Rightarrow y=\dfrac{3x}{2},y=\dfrac{4x}{3}.............\left( 4 \right)$

Substituting both the values of $y$ from equation $\left( 4 \right)$ in equation $\left( 2 \right)$, we get,

$\begin{align}

& 5x\left( \dfrac{3x}{2} \right)-6{{x}^{2}}=6,5x\left( \dfrac{4x}{3} \right)-6{{x}^{2}}=6 \\

& \Rightarrow \left( \dfrac{15{{x}^{2}}}{2} \right)-6{{x}^{2}}=6,\left( \dfrac{20{{x}^{2}}}{3} \right)-6{{x}^{2}}=6 \\

& \Rightarrow \dfrac{15{{x}^{2}}-12{{x}^{2}}}{2}=6,\dfrac{20{{x}^{2}}-18{{x}^{2}}}{3}=6 \\

& \Rightarrow 3{{x}^{2}}=12,2{{x}^{2}}=18 \\

& \Rightarrow {{x}^{2}}=4,{{x}^{2}}=9 \\

& \Rightarrow x=\pm 2,x=\pm 3 \\

\end{align}$

Substituting $x=\pm 2$ in $y=\dfrac{3x}{2}$ and $x=\pm 3$ in $y=\dfrac{4x}{3}$, we get,

$y=\pm 3,y=\pm 4$

So, the two possible answers are $x=\pm 2;y=\pm 3$ and $x=\pm 3;y=\pm 4$.

Hence, the answer is option (a) and option (b).

Note: There is an alternative approach to solve this problem very quickly. We can try to substitute each option in the equation given in the question. Whichever option satisfies the equation, that option will be considered as an answer.

Recently Updated Pages

what is the correct chronological order of the following class 10 social science CBSE

Which of the following was not the actual cause for class 10 social science CBSE

Which of the following statements is not correct A class 10 social science CBSE

Which of the following leaders was not present in the class 10 social science CBSE

Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE

Which one of the following places is not covered by class 10 social science CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Who was the Governor general of India at the time of class 11 social science CBSE

How do you graph the function fx 4x class 9 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

Difference Between Plant Cell and Animal Cell