
Solve the following equations and choose the correct answer from the below given options:
$x+2y-z=11$
${x^2} - 4{y^2} + {z^2} = 37$
$xz=24$
A. x=2,-5; y=2; z=2,-4
B. x=-8,3; y=3; z=-3,8
C. x=-3 5; y=4; z=2, 5
Answer
606.3k+ views
Hint: Since we have three equations here, we will take one equation and express it in terms of any other equation and try to solve it.
Complete step-by-step answer:
The equation given to us are
${x^2} - 4{y^2} + {z^2} = 37$----------(i)
$xz=24$---------(ii)
$ \Rightarrow z = \dfrac{{24}}{x}$
$x+2y-z=11$------(iii)
Now, let us consider eq (iii)
x+2y-z=11
This, can be written as
x-z=11-2y
Now, let us square both the sides so that we can express this in terms of eq(i)
So, we get ${(x - z)^2} = {(11 - 2y)^2}$
${x^2} + {z^2} - 2xz = 121 + 4{y^2} - 44y$
${x^2} + {z^2} - 4{y^2} - 2xz = 121 - 44y$
But, already from eq(i), we had ${x^2} - 4{y^2} + {z^2} = 37$
So, let us substitute this value here
So, we get
37-2(24)=121-44y
-44y=-132
From this, we get y=3
To get the value of x , let us substitute this value of y in eq(iii),
So, we get
x+2y-z=11
x+2(3)-z=11
x+6-z=11
From eq (ii), we get $z = \dfrac{{24}}{x}$
So, substituting this value in the above equation ,we get
$x - \dfrac{{24}}{x} = 5$
On solving this further, we get
$
{x^2} - 24 = 5x \\
\Rightarrow {x^2} - 5x - 24 = 0 \\
$
On factorising this, we get
$
{x^2} - 3x + 8x - 24 = 0 \\
\Rightarrow x(x - 3) + 8(x - 3) = 0 \\
\Rightarrow x = 3, - 8 \\
$
Putting these values of x in $z = \dfrac{{24}}{x}$, we get
In the first case, let us consider the value of x=3,so z=$\dfrac{{24}}{3} = 8$
In the second case, let us consider the value of x=-8, so we get z=$\dfrac{{24}}{{ - 8}} = - 3$
So, z=8,-3
So, from this , we can write x=-8,3 ; y=3; z=-3,8
So, option B is the correct answer for this question.
Note: In these type of questions, first try to manipulate a specific equation and try to express in terms of another equation which is given in the data so that we can easily find out the required values(in this case x,y,z) using those equations.
Complete step-by-step answer:
The equation given to us are
${x^2} - 4{y^2} + {z^2} = 37$----------(i)
$xz=24$---------(ii)
$ \Rightarrow z = \dfrac{{24}}{x}$
$x+2y-z=11$------(iii)
Now, let us consider eq (iii)
x+2y-z=11
This, can be written as
x-z=11-2y
Now, let us square both the sides so that we can express this in terms of eq(i)
So, we get ${(x - z)^2} = {(11 - 2y)^2}$
${x^2} + {z^2} - 2xz = 121 + 4{y^2} - 44y$
${x^2} + {z^2} - 4{y^2} - 2xz = 121 - 44y$
But, already from eq(i), we had ${x^2} - 4{y^2} + {z^2} = 37$
So, let us substitute this value here
So, we get
37-2(24)=121-44y
-44y=-132
From this, we get y=3
To get the value of x , let us substitute this value of y in eq(iii),
So, we get
x+2y-z=11
x+2(3)-z=11
x+6-z=11
From eq (ii), we get $z = \dfrac{{24}}{x}$
So, substituting this value in the above equation ,we get
$x - \dfrac{{24}}{x} = 5$
On solving this further, we get
$
{x^2} - 24 = 5x \\
\Rightarrow {x^2} - 5x - 24 = 0 \\
$
On factorising this, we get
$
{x^2} - 3x + 8x - 24 = 0 \\
\Rightarrow x(x - 3) + 8(x - 3) = 0 \\
\Rightarrow x = 3, - 8 \\
$
Putting these values of x in $z = \dfrac{{24}}{x}$, we get
In the first case, let us consider the value of x=3,so z=$\dfrac{{24}}{3} = 8$
In the second case, let us consider the value of x=-8, so we get z=$\dfrac{{24}}{{ - 8}} = - 3$
So, z=8,-3
So, from this , we can write x=-8,3 ; y=3; z=-3,8
So, option B is the correct answer for this question.
Note: In these type of questions, first try to manipulate a specific equation and try to express in terms of another equation which is given in the data so that we can easily find out the required values(in this case x,y,z) using those equations.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

