Solve the following equation: ${x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x$
Answer
366k+ views
Hint- Replace the value of x as its inverse in the given equation and proceed with sum and product of roots.
Given equation is \[{x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0{\text{ }} \to {\text{(1)}}\]
Let us replace \[x\] by \[\dfrac{1}{x}\] in the given equation, we get
\[{\left( {\dfrac{1}{x}} \right)^4} + \dfrac{8}{9}{\left( {\dfrac{1}{x}} \right)^2} + 1 = 3{\left( {\dfrac{1}{x}} \right)^3} + \dfrac{3}{x} \Rightarrow \dfrac{1}{{{x^4}}} + \dfrac{8}{{9{x^2}}} + 1 = \dfrac{3}{{{x^3}}} + \dfrac{3}{x}\]
Taking \[{\text{9}}{x^4}\] as the LCM on the LHS and \[{x^3}\] as the LCM on the RHS of the above equation
\[
\Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9{x^4}}} = \dfrac{{3 + 3{x^2}}}{{{x^3}}} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9x}} = 3 + 3{x^2} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{9} = x\left( {3 + 3{x^2}} \right) \\
\Rightarrow 1 + \dfrac{{8{x^2}}}{9} + {x^4} = 3x + 3{x^3} \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0 \\
\]
Clearly, the above equation which is obtained by replacing \[x\] by \[\dfrac{1}{x}\] in the given equation is the same as the given equation.
As, we know that in case of four degree polynomial (having two roots as \[\alpha \], \[\beta \]) if \[x\] is replaced by \[\dfrac{1}{x}\] and the fourth degree polynomial comes out to be same as the previous one then the other two roots of that polynomial will be \[\dfrac{1}{\alpha }\] and \[\dfrac{1}{\beta }\].
Also, for any general fourth degree polynomial \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
Sum of all the roots\[ = - \dfrac{b}{a}\]
Sum of product of different roots taken two at a time\[ = \dfrac{c}{a}\]
According to the given equation (1), we can say \[a = 1,{\text{ }}b = 3,{\text{ }}c = \dfrac{8}{9},{\text{ }}d = 3\] and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{3}{1} = - 3{\text{ }} \to {\text{(2)}}\]
Also, sum of product of different roots taken two at a time of the given equation (1) is given by
\[\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\dfrac{8}{9}}}{1} = \dfrac{8}{9}\]
\[
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{8}{9} \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = \dfrac{8}{9} - 2 = - \dfrac{{10}}{9} \\
\Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9} \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}{\text{ }} \to {\text{(3)}} \\
\]
Equation (2) can be rearranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right)\] in equation (3), we get
\[\left[ { - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ { - 3 - t} \right]t = - \dfrac{{10}}{9} \Rightarrow - \left( {3 + t} \right)t = - \dfrac{{10}}{9} \Rightarrow \left( {3 + t} \right)t = \dfrac{{10}}{9} \Rightarrow 9{t^2} + 27t - 10 = 0 \\
\Rightarrow 9{t^2} + 27t - 10 = 0 \Rightarrow 9{t^2} - 3t + 30t - 10 = 0 \Rightarrow 3t\left( {3t - 1} \right) + 10\left( {3t - 1} \right) = 0 \\
\Rightarrow \left( {3t - 1} \right)\left( {3t + 10} \right) = 0 \\
\]
i.e., Either \[3t - 1 = 0\] or \[3t + 10 = 0\]
\[
\Rightarrow t = \dfrac{1}{3} \Rightarrow \beta + \dfrac{1}{\beta } = \dfrac{1}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = \dfrac{1}{3} \Rightarrow 3{\beta ^2} + 3 = \beta \Rightarrow 3{\beta ^2} - \beta + 3 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 3 \times 3} }}{{2 \times 3}} \\
\Rightarrow \beta = \dfrac{{1 \pm \sqrt {1 - 36} }}{6} \Rightarrow \beta = \dfrac{{1 \pm \sqrt { - 35} }}{6} \Rightarrow \beta = \dfrac{{1 \pm i\sqrt {35} }}{6} \\
\]
or \[
t = - \dfrac{{10}}{3} \Rightarrow \beta + \dfrac{1}{\beta } = - \dfrac{{10}}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - \dfrac{{10}}{3} \Rightarrow 3{\beta ^2} + 3 = - 10\beta \Rightarrow 3{\beta ^2} + 10\beta + 3 = 0 \Rightarrow 3{\beta ^2} + 9\beta + \beta + 3 = 0 \\
\Rightarrow 3\beta \left( {\beta + 3} \right) + 1\left( {\beta + 3} \right) = 0 \Rightarrow \left( {3\beta + 1} \right)\left( {\beta + 3} \right) = 0 \Rightarrow \beta = - \dfrac{1}{3}, - 3 \\
\]
Using equation (2) put the value of \[\beta \], we will get the value of \[\alpha \]
\[ \Rightarrow \alpha = - \dfrac{1}{3}, - 3\] or \[\alpha = \dfrac{{1 \pm i\sqrt {35} }}{6}\]
Therefore, all the roots of the given equation are \[ - \dfrac{1}{3}, - 3,\dfrac{{1 \pm i\sqrt {35} }}{6}\].
Note- These types of problems can be solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get the values of these roots.
Given equation is \[{x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0{\text{ }} \to {\text{(1)}}\]
Let us replace \[x\] by \[\dfrac{1}{x}\] in the given equation, we get
\[{\left( {\dfrac{1}{x}} \right)^4} + \dfrac{8}{9}{\left( {\dfrac{1}{x}} \right)^2} + 1 = 3{\left( {\dfrac{1}{x}} \right)^3} + \dfrac{3}{x} \Rightarrow \dfrac{1}{{{x^4}}} + \dfrac{8}{{9{x^2}}} + 1 = \dfrac{3}{{{x^3}}} + \dfrac{3}{x}\]
Taking \[{\text{9}}{x^4}\] as the LCM on the LHS and \[{x^3}\] as the LCM on the RHS of the above equation
\[
\Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9{x^4}}} = \dfrac{{3 + 3{x^2}}}{{{x^3}}} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9x}} = 3 + 3{x^2} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{9} = x\left( {3 + 3{x^2}} \right) \\
\Rightarrow 1 + \dfrac{{8{x^2}}}{9} + {x^4} = 3x + 3{x^3} \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0 \\
\]
Clearly, the above equation which is obtained by replacing \[x\] by \[\dfrac{1}{x}\] in the given equation is the same as the given equation.
As, we know that in case of four degree polynomial (having two roots as \[\alpha \], \[\beta \]) if \[x\] is replaced by \[\dfrac{1}{x}\] and the fourth degree polynomial comes out to be same as the previous one then the other two roots of that polynomial will be \[\dfrac{1}{\alpha }\] and \[\dfrac{1}{\beta }\].
Also, for any general fourth degree polynomial \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
Sum of all the roots\[ = - \dfrac{b}{a}\]
Sum of product of different roots taken two at a time\[ = \dfrac{c}{a}\]
According to the given equation (1), we can say \[a = 1,{\text{ }}b = 3,{\text{ }}c = \dfrac{8}{9},{\text{ }}d = 3\] and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{3}{1} = - 3{\text{ }} \to {\text{(2)}}\]
Also, sum of product of different roots taken two at a time of the given equation (1) is given by
\[\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\dfrac{8}{9}}}{1} = \dfrac{8}{9}\]
\[
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{8}{9} \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = \dfrac{8}{9} - 2 = - \dfrac{{10}}{9} \\
\Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9} \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}{\text{ }} \to {\text{(3)}} \\
\]
Equation (2) can be rearranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right)\] in equation (3), we get
\[\left[ { - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ { - 3 - t} \right]t = - \dfrac{{10}}{9} \Rightarrow - \left( {3 + t} \right)t = - \dfrac{{10}}{9} \Rightarrow \left( {3 + t} \right)t = \dfrac{{10}}{9} \Rightarrow 9{t^2} + 27t - 10 = 0 \\
\Rightarrow 9{t^2} + 27t - 10 = 0 \Rightarrow 9{t^2} - 3t + 30t - 10 = 0 \Rightarrow 3t\left( {3t - 1} \right) + 10\left( {3t - 1} \right) = 0 \\
\Rightarrow \left( {3t - 1} \right)\left( {3t + 10} \right) = 0 \\
\]
i.e., Either \[3t - 1 = 0\] or \[3t + 10 = 0\]
\[
\Rightarrow t = \dfrac{1}{3} \Rightarrow \beta + \dfrac{1}{\beta } = \dfrac{1}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = \dfrac{1}{3} \Rightarrow 3{\beta ^2} + 3 = \beta \Rightarrow 3{\beta ^2} - \beta + 3 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 3 \times 3} }}{{2 \times 3}} \\
\Rightarrow \beta = \dfrac{{1 \pm \sqrt {1 - 36} }}{6} \Rightarrow \beta = \dfrac{{1 \pm \sqrt { - 35} }}{6} \Rightarrow \beta = \dfrac{{1 \pm i\sqrt {35} }}{6} \\
\]
or \[
t = - \dfrac{{10}}{3} \Rightarrow \beta + \dfrac{1}{\beta } = - \dfrac{{10}}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - \dfrac{{10}}{3} \Rightarrow 3{\beta ^2} + 3 = - 10\beta \Rightarrow 3{\beta ^2} + 10\beta + 3 = 0 \Rightarrow 3{\beta ^2} + 9\beta + \beta + 3 = 0 \\
\Rightarrow 3\beta \left( {\beta + 3} \right) + 1\left( {\beta + 3} \right) = 0 \Rightarrow \left( {3\beta + 1} \right)\left( {\beta + 3} \right) = 0 \Rightarrow \beta = - \dfrac{1}{3}, - 3 \\
\]
Using equation (2) put the value of \[\beta \], we will get the value of \[\alpha \]
\[ \Rightarrow \alpha = - \dfrac{1}{3}, - 3\] or \[\alpha = \dfrac{{1 \pm i\sqrt {35} }}{6}\]
Therefore, all the roots of the given equation are \[ - \dfrac{1}{3}, - 3,\dfrac{{1 \pm i\sqrt {35} }}{6}\].
Note- These types of problems can be solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get the values of these roots.
Last updated date: 27th Sep 2023
•
Total views: 366k
•
Views today: 11.66k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

10 examples of evaporation in daily life with explanations

How many crores make 10 million class 7 maths CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE

What is the past participle of wear Is it worn or class 10 english CBSE
