
Solve the following equation: ${x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x$
Answer
609.9k+ views
Hint- Replace the value of x as its inverse in the given equation and proceed with sum and product of roots.
Given equation is \[{x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0{\text{ }} \to {\text{(1)}}\]
Let us replace \[x\] by \[\dfrac{1}{x}\] in the given equation, we get
\[{\left( {\dfrac{1}{x}} \right)^4} + \dfrac{8}{9}{\left( {\dfrac{1}{x}} \right)^2} + 1 = 3{\left( {\dfrac{1}{x}} \right)^3} + \dfrac{3}{x} \Rightarrow \dfrac{1}{{{x^4}}} + \dfrac{8}{{9{x^2}}} + 1 = \dfrac{3}{{{x^3}}} + \dfrac{3}{x}\]
Taking \[{\text{9}}{x^4}\] as the LCM on the LHS and \[{x^3}\] as the LCM on the RHS of the above equation
\[
\Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9{x^4}}} = \dfrac{{3 + 3{x^2}}}{{{x^3}}} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9x}} = 3 + 3{x^2} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{9} = x\left( {3 + 3{x^2}} \right) \\
\Rightarrow 1 + \dfrac{{8{x^2}}}{9} + {x^4} = 3x + 3{x^3} \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0 \\
\]
Clearly, the above equation which is obtained by replacing \[x\] by \[\dfrac{1}{x}\] in the given equation is the same as the given equation.
As, we know that in case of four degree polynomial (having two roots as \[\alpha \], \[\beta \]) if \[x\] is replaced by \[\dfrac{1}{x}\] and the fourth degree polynomial comes out to be same as the previous one then the other two roots of that polynomial will be \[\dfrac{1}{\alpha }\] and \[\dfrac{1}{\beta }\].
Also, for any general fourth degree polynomial \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
Sum of all the roots\[ = - \dfrac{b}{a}\]
Sum of product of different roots taken two at a time\[ = \dfrac{c}{a}\]
According to the given equation (1), we can say \[a = 1,{\text{ }}b = 3,{\text{ }}c = \dfrac{8}{9},{\text{ }}d = 3\] and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{3}{1} = - 3{\text{ }} \to {\text{(2)}}\]
Also, sum of product of different roots taken two at a time of the given equation (1) is given by
\[\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\dfrac{8}{9}}}{1} = \dfrac{8}{9}\]
\[
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{8}{9} \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = \dfrac{8}{9} - 2 = - \dfrac{{10}}{9} \\
\Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9} \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}{\text{ }} \to {\text{(3)}} \\
\]
Equation (2) can be rearranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right)\] in equation (3), we get
\[\left[ { - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ { - 3 - t} \right]t = - \dfrac{{10}}{9} \Rightarrow - \left( {3 + t} \right)t = - \dfrac{{10}}{9} \Rightarrow \left( {3 + t} \right)t = \dfrac{{10}}{9} \Rightarrow 9{t^2} + 27t - 10 = 0 \\
\Rightarrow 9{t^2} + 27t - 10 = 0 \Rightarrow 9{t^2} - 3t + 30t - 10 = 0 \Rightarrow 3t\left( {3t - 1} \right) + 10\left( {3t - 1} \right) = 0 \\
\Rightarrow \left( {3t - 1} \right)\left( {3t + 10} \right) = 0 \\
\]
i.e., Either \[3t - 1 = 0\] or \[3t + 10 = 0\]
\[
\Rightarrow t = \dfrac{1}{3} \Rightarrow \beta + \dfrac{1}{\beta } = \dfrac{1}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = \dfrac{1}{3} \Rightarrow 3{\beta ^2} + 3 = \beta \Rightarrow 3{\beta ^2} - \beta + 3 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 3 \times 3} }}{{2 \times 3}} \\
\Rightarrow \beta = \dfrac{{1 \pm \sqrt {1 - 36} }}{6} \Rightarrow \beta = \dfrac{{1 \pm \sqrt { - 35} }}{6} \Rightarrow \beta = \dfrac{{1 \pm i\sqrt {35} }}{6} \\
\]
or \[
t = - \dfrac{{10}}{3} \Rightarrow \beta + \dfrac{1}{\beta } = - \dfrac{{10}}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - \dfrac{{10}}{3} \Rightarrow 3{\beta ^2} + 3 = - 10\beta \Rightarrow 3{\beta ^2} + 10\beta + 3 = 0 \Rightarrow 3{\beta ^2} + 9\beta + \beta + 3 = 0 \\
\Rightarrow 3\beta \left( {\beta + 3} \right) + 1\left( {\beta + 3} \right) = 0 \Rightarrow \left( {3\beta + 1} \right)\left( {\beta + 3} \right) = 0 \Rightarrow \beta = - \dfrac{1}{3}, - 3 \\
\]
Using equation (2) put the value of \[\beta \], we will get the value of \[\alpha \]
\[ \Rightarrow \alpha = - \dfrac{1}{3}, - 3\] or \[\alpha = \dfrac{{1 \pm i\sqrt {35} }}{6}\]
Therefore, all the roots of the given equation are \[ - \dfrac{1}{3}, - 3,\dfrac{{1 \pm i\sqrt {35} }}{6}\].
Note- These types of problems can be solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get the values of these roots.
Given equation is \[{x^4} + \dfrac{8}{9}{x^2} + 1 = 3{x^3} + 3x \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0{\text{ }} \to {\text{(1)}}\]
Let us replace \[x\] by \[\dfrac{1}{x}\] in the given equation, we get
\[{\left( {\dfrac{1}{x}} \right)^4} + \dfrac{8}{9}{\left( {\dfrac{1}{x}} \right)^2} + 1 = 3{\left( {\dfrac{1}{x}} \right)^3} + \dfrac{3}{x} \Rightarrow \dfrac{1}{{{x^4}}} + \dfrac{8}{{9{x^2}}} + 1 = \dfrac{3}{{{x^3}}} + \dfrac{3}{x}\]
Taking \[{\text{9}}{x^4}\] as the LCM on the LHS and \[{x^3}\] as the LCM on the RHS of the above equation
\[
\Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9{x^4}}} = \dfrac{{3 + 3{x^2}}}{{{x^3}}} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{{9x}} = 3 + 3{x^2} \Rightarrow \dfrac{{9 + 8{x^2} + 9{x^4}}}{9} = x\left( {3 + 3{x^2}} \right) \\
\Rightarrow 1 + \dfrac{{8{x^2}}}{9} + {x^4} = 3x + 3{x^3} \Rightarrow {x^4} + 3{x^3} + \dfrac{{8{x^2}}}{9} + 3x + 1 = 0 \\
\]
Clearly, the above equation which is obtained by replacing \[x\] by \[\dfrac{1}{x}\] in the given equation is the same as the given equation.
As, we know that in case of four degree polynomial (having two roots as \[\alpha \], \[\beta \]) if \[x\] is replaced by \[\dfrac{1}{x}\] and the fourth degree polynomial comes out to be same as the previous one then the other two roots of that polynomial will be \[\dfrac{1}{\alpha }\] and \[\dfrac{1}{\beta }\].
Also, for any general fourth degree polynomial \[a{x^4} + b{x^3} + c{x^2} + dx + e = 0\]
Sum of all the roots\[ = - \dfrac{b}{a}\]
Sum of product of different roots taken two at a time\[ = \dfrac{c}{a}\]
According to the given equation (1), we can say \[a = 1,{\text{ }}b = 3,{\text{ }}c = \dfrac{8}{9},{\text{ }}d = 3\] and \[e = 1\].
Therefore, Sum of all the roots of the given equation (1) is given by \[\alpha + \beta + \dfrac{1}{\alpha } + \dfrac{1}{\beta } = - \dfrac{3}{1} = - 3{\text{ }} \to {\text{(2)}}\]
Also, sum of product of different roots taken two at a time of the given equation (1) is given by
\[\alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\beta {\text{.}}\dfrac{1}{\beta }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{{\dfrac{8}{9}}}{1} = \dfrac{8}{9}\]
\[
\Rightarrow \alpha \beta {\text{ + }}1{\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}1{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta }{\text{ }} = \dfrac{8}{9} \Rightarrow \alpha \beta {\text{ + }}\alpha {\text{.}}\dfrac{1}{\beta }{\text{ + }}\beta {\text{.}}\dfrac{1}{\alpha }{\text{ + }}\dfrac{1}{\alpha }{\text{.}}\dfrac{1}{\beta } = \dfrac{8}{9} - 2 = - \dfrac{{10}}{9} \\
\Rightarrow \alpha \left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right){\text{ + }}\dfrac{1}{\alpha }\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9} \Rightarrow \left( {\alpha + \dfrac{1}{\alpha }} \right)\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}{\text{ }} \to {\text{(3)}} \\
\]
Equation (2) can be rearranged as \[\left( {\alpha + \dfrac{1}{\alpha }} \right) = - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)\]
Put the value of \[\left( {\alpha + \dfrac{1}{\alpha }} \right)\] in equation (3), we get
\[\left[ { - 3 - \left( {\beta + \dfrac{1}{\beta }} \right)} \right]\left( {\beta {\text{ + }}\dfrac{1}{\beta }} \right) = - \dfrac{{10}}{9}\]
Let \[\left( {\beta + \dfrac{1}{\beta }} \right) = t\]
\[
\Rightarrow \left[ { - 3 - t} \right]t = - \dfrac{{10}}{9} \Rightarrow - \left( {3 + t} \right)t = - \dfrac{{10}}{9} \Rightarrow \left( {3 + t} \right)t = \dfrac{{10}}{9} \Rightarrow 9{t^2} + 27t - 10 = 0 \\
\Rightarrow 9{t^2} + 27t - 10 = 0 \Rightarrow 9{t^2} - 3t + 30t - 10 = 0 \Rightarrow 3t\left( {3t - 1} \right) + 10\left( {3t - 1} \right) = 0 \\
\Rightarrow \left( {3t - 1} \right)\left( {3t + 10} \right) = 0 \\
\]
i.e., Either \[3t - 1 = 0\] or \[3t + 10 = 0\]
\[
\Rightarrow t = \dfrac{1}{3} \Rightarrow \beta + \dfrac{1}{\beta } = \dfrac{1}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = \dfrac{1}{3} \Rightarrow 3{\beta ^2} + 3 = \beta \Rightarrow 3{\beta ^2} - \beta + 3 = 0 \Rightarrow \beta = \dfrac{{ - \left( { - 1} \right) \pm \sqrt {{{\left( { - 1} \right)}^2} - 4 \times 3 \times 3} }}{{2 \times 3}} \\
\Rightarrow \beta = \dfrac{{1 \pm \sqrt {1 - 36} }}{6} \Rightarrow \beta = \dfrac{{1 \pm \sqrt { - 35} }}{6} \Rightarrow \beta = \dfrac{{1 \pm i\sqrt {35} }}{6} \\
\]
or \[
t = - \dfrac{{10}}{3} \Rightarrow \beta + \dfrac{1}{\beta } = - \dfrac{{10}}{3} \Rightarrow \dfrac{{{\beta ^2} + 1}}{\beta } = - \dfrac{{10}}{3} \Rightarrow 3{\beta ^2} + 3 = - 10\beta \Rightarrow 3{\beta ^2} + 10\beta + 3 = 0 \Rightarrow 3{\beta ^2} + 9\beta + \beta + 3 = 0 \\
\Rightarrow 3\beta \left( {\beta + 3} \right) + 1\left( {\beta + 3} \right) = 0 \Rightarrow \left( {3\beta + 1} \right)\left( {\beta + 3} \right) = 0 \Rightarrow \beta = - \dfrac{1}{3}, - 3 \\
\]
Using equation (2) put the value of \[\beta \], we will get the value of \[\alpha \]
\[ \Rightarrow \alpha = - \dfrac{1}{3}, - 3\] or \[\alpha = \dfrac{{1 \pm i\sqrt {35} }}{6}\]
Therefore, all the roots of the given equation are \[ - \dfrac{1}{3}, - 3,\dfrac{{1 \pm i\sqrt {35} }}{6}\].
Note- These types of problems can be solved by somehow checking for some properties regarding roots of a polynomial and then finding out an appropriate relation between the roots and hence solving further to get the values of these roots.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

Write the difference between soap and detergent class 10 chemistry CBSE

A triangle ABC is drawn to circumscribe a circle of class 10 maths CBSE

