
Solve the following equation:
\[
{x^2} + xy + xz = 18, \\
{y^2} + yz + yz + 12 = 0, \\
{z^2} + zx + zy = 30. \\
\\
{\mathbf{A}}.\,x = \pm 2,y = \mp 2,z = \pm 4 \\
{\mathbf{B}}.\,x = \pm 3,y = \mp 2,z = \pm 5 \\
{\mathbf{C}}.\,\,x = \pm 4,y = \pm 5,z = \pm 5 \\
{\mathbf{D}}.\,{\text{None of the above}} \\
\]
Answer
621.6k+ views
Hint: In order to solve this question, we have to solve the three equations given in the question. We can take something common then solve it by eliminating or dividing.
The given equations are,
\[{x^2} + xy + xz = 18\],
Taking $x$ as common from LHS we get,
\[
x(x + y + z) = 18\,\,\,\,\,\,...({\text{i}}) \\
\\
{y^2} + yz + yz + 12 = 0 \\
\]
Taking $y$ as common from LHS we get,
\[y(x + y + z) = - 12\,\,\,\,\,\,\,\,\,...({\text{ii}})\]
\[{z^2} + zx + zy = 30\]
Taking $z$ as common from LHS we get,
\[z(x + y + z) = 30\,\,\,\,\,\,\,\,\,...({\text{iii}})\]
Dividing (i) by (ii) we get,
\[
\dfrac{x}{y} = \dfrac{{ - 18}}{{12}} = \dfrac{{ - 3}}{2} \\
y = - \dfrac{2}{3}x\;\;{\text{ }}\;.......\left( a \right) \\
\]
Dividing (i) by (iii) we get,
\[\dfrac{x}{z} = \dfrac{{18}}{{30}} = \dfrac{3}{5}\]
Then,
\[z = \dfrac{5}{3}x\,\,\,\,\,\,......(b)\]
Substituting $(a)$ and $(b)$ in (i) we get,
\[x\left( {x - \dfrac{2}{3}x + \dfrac{5}{3}x} \right) = 18\]
On solving above we get,
\[
2{x^2} = 18 \\
{x^2} = 9 \\
\]
Therefore either \[x = 3{\text{ }}\] or \[x = - 3\]
That is \[x = \pm 3\]
On putting the value of $x$ in $(a)$ and $(b)$ we get,
\[
y = - \dfrac{2}{3}( \pm 3) = \mp 2 \\
\\
z = \dfrac{5}{3}( \pm 3) = \pm 5 \\
\]
Therefore,
\[x = \pm 3,y = \mp 2,z = \pm 5\]
Hence the correct option is B.
Note: In this question we have taken \[x,y,z\] common from the equation \[{\text{(i),(ii),(iii)}}\] then we got various equations which can be used to find the values of \[x,y,z\] 5as done above . Therefore we can find the values of various variables . We can multiply, divide, add or subtract between these equations to get the desired results.
The given equations are,
\[{x^2} + xy + xz = 18\],
Taking $x$ as common from LHS we get,
\[
x(x + y + z) = 18\,\,\,\,\,\,...({\text{i}}) \\
\\
{y^2} + yz + yz + 12 = 0 \\
\]
Taking $y$ as common from LHS we get,
\[y(x + y + z) = - 12\,\,\,\,\,\,\,\,\,...({\text{ii}})\]
\[{z^2} + zx + zy = 30\]
Taking $z$ as common from LHS we get,
\[z(x + y + z) = 30\,\,\,\,\,\,\,\,\,...({\text{iii}})\]
Dividing (i) by (ii) we get,
\[
\dfrac{x}{y} = \dfrac{{ - 18}}{{12}} = \dfrac{{ - 3}}{2} \\
y = - \dfrac{2}{3}x\;\;{\text{ }}\;.......\left( a \right) \\
\]
Dividing (i) by (iii) we get,
\[\dfrac{x}{z} = \dfrac{{18}}{{30}} = \dfrac{3}{5}\]
Then,
\[z = \dfrac{5}{3}x\,\,\,\,\,\,......(b)\]
Substituting $(a)$ and $(b)$ in (i) we get,
\[x\left( {x - \dfrac{2}{3}x + \dfrac{5}{3}x} \right) = 18\]
On solving above we get,
\[
2{x^2} = 18 \\
{x^2} = 9 \\
\]
Therefore either \[x = 3{\text{ }}\] or \[x = - 3\]
That is \[x = \pm 3\]
On putting the value of $x$ in $(a)$ and $(b)$ we get,
\[
y = - \dfrac{2}{3}( \pm 3) = \mp 2 \\
\\
z = \dfrac{5}{3}( \pm 3) = \pm 5 \\
\]
Therefore,
\[x = \pm 3,y = \mp 2,z = \pm 5\]
Hence the correct option is B.
Note: In this question we have taken \[x,y,z\] common from the equation \[{\text{(i),(ii),(iii)}}\] then we got various equations which can be used to find the values of \[x,y,z\] 5as done above . Therefore we can find the values of various variables . We can multiply, divide, add or subtract between these equations to get the desired results.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Find the mode and median of the data 13 16 12 14 1-class-9-maths-CBSE

What were the main changes brought about by the Bolsheviks class 9 social science CBSE

What is the theme or message of the poem The road not class 9 english CBSE

What are the major achievements of the UNO class 9 social science CBSE

Explain the importance of pH in everyday life class 9 chemistry CBSE

Differentiate between parenchyma collenchyma and sclerenchyma class 9 biology CBSE

