Solve the following equation having given log2, log3 and log7,
${21^x} = {2^{2x + 1}}{.5^x}$
Answer
Verified
467.7k+ views
Hint: To solve this question, we will use some of the logarithmic properties, i.e. $\log {a^b} = b\log a,\log \left( {ab} \right) = \log a + \log b$ etc. using these properties, we can solve this.
Complete step-by-step answer:
We have,
${21^x} = {2^{2x + 1}}{.5^x}$ …… (i)
Taking log both sides,
$ \Rightarrow \log \left( {{{21}^x}} \right) = \log \left( {{2^{2x + 1}}{{.5}^x}} \right)$
We know that,
$ \Rightarrow \log {a^b} = b\log a$ and $\log \left( {ab} \right) = \log a + \log b$
So,
$ \Rightarrow x\log \left( {21} \right) = \log \left( {{2^{2x + 1}}} \right) + \log \left( {{5^x}} \right)$
$ \Rightarrow x\log \left( {21} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
We can also write this as,
$ \Rightarrow x\log \left( {7.3} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
It will become,
$ \Rightarrow x\log \left( 7 \right) + x\log \left( 3 \right) = \left( {2x} \right)\log \left( 2 \right) + \log \left( 2 \right) + x\log \left( 5 \right)$
Separating the coefficients of x,
$ \Rightarrow x\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right] = \log \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right]}}$ …….. (ii)
As we know that, log10 =1
We can write log10 as:
$ \Rightarrow \log \left( {5.2} \right) = 1$
$ \Rightarrow \log \left( 5 \right) + \log \left( 2 \right) = 1$
$ \Rightarrow \log \left( 5 \right) = 1 - \log \left( 2 \right)$
Putting this value in equation (ii),
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - 1 + \log \left( 2 \right)} \right]}}$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - \log \left( 2 \right) - 1} \right]}}$
Here, we can see that the value of x is in the form having the given log2, log3 and log7.
Hence, it is the correct answer.
Note: Y times the logarithm of x is the logarithm of the exponent x, elevated to the power of y. The power rule can be used by multiplication operation for quick exponent calculation. Where appropriate, use the correct formula or logarithm and try to solve the problem.
Complete step-by-step answer:
We have,
${21^x} = {2^{2x + 1}}{.5^x}$ …… (i)
Taking log both sides,
$ \Rightarrow \log \left( {{{21}^x}} \right) = \log \left( {{2^{2x + 1}}{{.5}^x}} \right)$
We know that,
$ \Rightarrow \log {a^b} = b\log a$ and $\log \left( {ab} \right) = \log a + \log b$
So,
$ \Rightarrow x\log \left( {21} \right) = \log \left( {{2^{2x + 1}}} \right) + \log \left( {{5^x}} \right)$
$ \Rightarrow x\log \left( {21} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
We can also write this as,
$ \Rightarrow x\log \left( {7.3} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
It will become,
$ \Rightarrow x\log \left( 7 \right) + x\log \left( 3 \right) = \left( {2x} \right)\log \left( 2 \right) + \log \left( 2 \right) + x\log \left( 5 \right)$
Separating the coefficients of x,
$ \Rightarrow x\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right] = \log \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right]}}$ …….. (ii)
As we know that, log10 =1
We can write log10 as:
$ \Rightarrow \log \left( {5.2} \right) = 1$
$ \Rightarrow \log \left( 5 \right) + \log \left( 2 \right) = 1$
$ \Rightarrow \log \left( 5 \right) = 1 - \log \left( 2 \right)$
Putting this value in equation (ii),
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - 1 + \log \left( 2 \right)} \right]}}$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - \log \left( 2 \right) - 1} \right]}}$
Here, we can see that the value of x is in the form having the given log2, log3 and log7.
Hence, it is the correct answer.
Note: Y times the logarithm of x is the logarithm of the exponent x, elevated to the power of y. The power rule can be used by multiplication operation for quick exponent calculation. Where appropriate, use the correct formula or logarithm and try to solve the problem.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success
Master Class 9 English: Engaging Questions & Answers for Success
Master Class 9 Science: Engaging Questions & Answers for Success
Master Class 9 Social Science: Engaging Questions & Answers for Success
Master Class 9 Maths: Engaging Questions & Answers for Success
Class 9 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
What is the role of NGOs during disaster managemen class 9 social science CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
Which places in India experience sunrise first and class 9 social science CBSE
Describe the 4 stages of the Unification of German class 9 social science CBSE
What is the full form of pH?
Primary function of sweat glands is A Thermoregulation class 9 biology CBSE