
Solve the following equation having given log2, log3 and log7,
${21^x} = {2^{2x + 1}}{.5^x}$
Answer
566.7k+ views
Hint: To solve this question, we will use some of the logarithmic properties, i.e. $\log {a^b} = b\log a,\log \left( {ab} \right) = \log a + \log b$ etc. using these properties, we can solve this.
Complete step-by-step answer:
We have,
${21^x} = {2^{2x + 1}}{.5^x}$ …… (i)
Taking log both sides,
$ \Rightarrow \log \left( {{{21}^x}} \right) = \log \left( {{2^{2x + 1}}{{.5}^x}} \right)$
We know that,
$ \Rightarrow \log {a^b} = b\log a$ and $\log \left( {ab} \right) = \log a + \log b$
So,
$ \Rightarrow x\log \left( {21} \right) = \log \left( {{2^{2x + 1}}} \right) + \log \left( {{5^x}} \right)$
$ \Rightarrow x\log \left( {21} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
We can also write this as,
$ \Rightarrow x\log \left( {7.3} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
It will become,
$ \Rightarrow x\log \left( 7 \right) + x\log \left( 3 \right) = \left( {2x} \right)\log \left( 2 \right) + \log \left( 2 \right) + x\log \left( 5 \right)$
Separating the coefficients of x,
$ \Rightarrow x\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right] = \log \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right]}}$ …….. (ii)
As we know that, log10 =1
We can write log10 as:
$ \Rightarrow \log \left( {5.2} \right) = 1$
$ \Rightarrow \log \left( 5 \right) + \log \left( 2 \right) = 1$
$ \Rightarrow \log \left( 5 \right) = 1 - \log \left( 2 \right)$
Putting this value in equation (ii),
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - 1 + \log \left( 2 \right)} \right]}}$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - \log \left( 2 \right) - 1} \right]}}$
Here, we can see that the value of x is in the form having the given log2, log3 and log7.
Hence, it is the correct answer.
Note: Y times the logarithm of x is the logarithm of the exponent x, elevated to the power of y. The power rule can be used by multiplication operation for quick exponent calculation. Where appropriate, use the correct formula or logarithm and try to solve the problem.
Complete step-by-step answer:
We have,
${21^x} = {2^{2x + 1}}{.5^x}$ …… (i)
Taking log both sides,
$ \Rightarrow \log \left( {{{21}^x}} \right) = \log \left( {{2^{2x + 1}}{{.5}^x}} \right)$
We know that,
$ \Rightarrow \log {a^b} = b\log a$ and $\log \left( {ab} \right) = \log a + \log b$
So,
$ \Rightarrow x\log \left( {21} \right) = \log \left( {{2^{2x + 1}}} \right) + \log \left( {{5^x}} \right)$
$ \Rightarrow x\log \left( {21} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
We can also write this as,
$ \Rightarrow x\log \left( {7.3} \right) = \left( {2x + 1} \right)\log \left( 2 \right) + x\log \left( 5 \right)$
It will become,
$ \Rightarrow x\log \left( 7 \right) + x\log \left( 3 \right) = \left( {2x} \right)\log \left( 2 \right) + \log \left( 2 \right) + x\log \left( 5 \right)$
Separating the coefficients of x,
$ \Rightarrow x\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right] = \log \left( 2 \right)$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - \log \left( 5 \right)} \right]}}$ …….. (ii)
As we know that, log10 =1
We can write log10 as:
$ \Rightarrow \log \left( {5.2} \right) = 1$
$ \Rightarrow \log \left( 5 \right) + \log \left( 2 \right) = 1$
$ \Rightarrow \log \left( 5 \right) = 1 - \log \left( 2 \right)$
Putting this value in equation (ii),
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - 2\log \left( 2 \right) - 1 + \log \left( 2 \right)} \right]}}$
$ \Rightarrow x = \dfrac{{\log \left( 2 \right)}}{{\left[ {\log \left( 7 \right) + \log \left( 3 \right) - \log \left( 2 \right) - 1} \right]}}$
Here, we can see that the value of x is in the form having the given log2, log3 and log7.
Hence, it is the correct answer.
Note: Y times the logarithm of x is the logarithm of the exponent x, elevated to the power of y. The power rule can be used by multiplication operation for quick exponent calculation. Where appropriate, use the correct formula or logarithm and try to solve the problem.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?


